1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Hierarchical assembly of light-emitting polymer nanofibers in helical morphologies
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/95/26/10.1063/1.3275727
1.
1.E. Pouget, E. Dujardin, A. Cavalier, A. Moreac, C. Valery, V. Marchi-Artzner, T. Weiss, A. Renault, M. Paternostre, and F. Artzner, Nature Mater. 434, 6 (2007).
2.
2.Y. He, T. Ye, M. Su, C. Zhang, A. E. Ribbe, W. Jiang, and C. Mao, Nature (London) 452, 198 (2008).
http://dx.doi.org/10.1038/nature06597
3.
3.R. M. Capito, H. S. Azevedo, Y. S. Velichko, A. Mata, and S. I. Stupp, Science 319, 1812 (2008).
http://dx.doi.org/10.1126/science.1154586
4.
4.F. Charra and J. Coutsy, Phys. Rev. Lett. 80, 1682 (1998).
http://dx.doi.org/10.1103/PhysRevLett.80.1682
5.
5.G. Schull, L. Douillard, C. Fiorini-Debuisschert, and F. Charra, Nano Lett. 6, 1360 (2006).
http://dx.doi.org/10.1021/nl060292n
6.
6.S. Furukawa, H. Uji-I, K. Tahara, T. Ichikawa, M. Sonoda, F. C. De Schryver, Y. Tobe, and S. J. De Feyter, J. Am. Chem. Soc. 128, 3502 (2006).
http://dx.doi.org/10.1021/ja0583362
7.
7.W. -Y. Yang, E. Lee, and M. Lee, J. Am. Chem. Soc. 128, 3484 (2006).
http://dx.doi.org/10.1021/ja057823e
8.
8.K. Akagi, G. Piao, S. Kaneko, K. Sakamaki, H. Shirakawa, and M. Kyotani, Science 282, 1683 (1998).
http://dx.doi.org/10.1126/science.282.5394.1683
9.
9.B. Grevin and P. Rannou, Nature Mater. 3, 503 (2004).
http://dx.doi.org/10.1038/nmat1173
10.
10.J. G. Park, S. H. Lee, B. Kim, and Y. W. Park, Appl. Phys. Lett. 81, 4625 (2002).
http://dx.doi.org/10.1063/1.1528281
11.
11.F. Di Benedetto, A. Camposeo, S. Pagliara, E. Mele, L. Persano, R. Stabile, R. Cingolani, and D. Pisignano, Nat. Nanotechnol. 3, 614 (2008).
http://dx.doi.org/10.1038/nnano.2008.232
12.
12.A. Babel, D. Li, Y. Xia, and S. A. Jenekhe, Macromolecules 38, 4705 (2005).
http://dx.doi.org/10.1021/ma047529r
13.
13.V. Gupta and N. Mjura, Mater. Lett. 60, 1466 (2006).
http://dx.doi.org/10.1016/j.matlet.2005.11.047
14.
14.W. Li and H. -L. Wang, J. Am. Chem. Soc. 126, 2278 (2004).
http://dx.doi.org/10.1021/ja039672q
15.
15.J. Bae, J. -H. Choi, Y. -S. Yoo, N. -K. Oh, B. -S. Kim, and M. Lee, J. Am. Chem. Soc. 127, 9668 (2005).
http://dx.doi.org/10.1021/ja051961m
16.
16.T. Han, D. H. Reneker, and A. L. Yarin, Polymer 48, 6064 (2007).
http://dx.doi.org/10.1016/j.polymer.2007.08.002
17.
17.R. Kessick and G. Tepper, Appl. Phys. Lett. 84, 4807 (2004).
http://dx.doi.org/10.1063/1.1762704
18.
18.M. K. Shin, S. I. Kim, and S. J. Kim, Appl. Phys. Lett. 88, 223109 (2006).
http://dx.doi.org/10.1063/1.2208689
19.
19.P. D. Dalton, D. Grafahrend, K. Klinkhammer, D. Kless, and M. Möller, Polymer 48, 6823 (2007).
http://dx.doi.org/10.1016/j.polymer.2007.09.037
20.
20.D. H. Reneker, A. L. Yarin, H. Fong, and S. J. Koombhongse, J. Appl. Phys. 87, 4531 (2000).
http://dx.doi.org/10.1063/1.373532
21.
21.Y. Y. Zhao, Q. -B. Yang, X. F. Lu, C. Wang, and Y. Wie, J. Polym. Sci., Part B: Polym. Phys. 43, 2190 (2005).
http://dx.doi.org/10.1002/polb.20506
22.
22.H. Dong, V. Nyame, A. G. MacDiarmid, and E. J. Wayne, Jr., J. Polym. Sci., Part B: Polym. Phys. 42, 3934 (2004).
http://dx.doi.org/10.1002/polb.20253
23.
23.T. -Q. Nguyen, V. Doan, and B. J. Schwartz, J. Chem. Phys. 110, 4068 (1999).
http://dx.doi.org/10.1063/1.478288
24.
24.T. -Q. Nguyen, I. B. Martini, J. Liu, and B. J. Schwartz, J. Phys. Chem. B 104, 237 (2000).
http://dx.doi.org/10.1021/jp993190c
25.
25.J. Wu, A. F. Gross, and S. H. Tolbert, J. Phys. Chem. B 103, 2374 (1999).
http://dx.doi.org/10.1021/jp984070s
26.
26.M. Misaki, M. Chikamatsu, Y. Yoshida, R. Azumi, N. Tanigaki, K. Yase, S. Nagamatsu, and Y. Ueda, Appl. Phys. Lett. 93, 023304 (2008).
http://dx.doi.org/10.1063/1.2959073
27.
27.M. Campoy-Quiles, Y. Ishii, H. Sakai, and H. Murata, Appl. Phys. Lett. 92, 213305 (2008).
http://dx.doi.org/10.1063/1.2936998
28.
28.L. X. Chen, W. J. H. Jager, M. P. Niemczyk, and M. R. Wasielewski, J. Phys. Chem. A 103, 4341 (1999).
http://dx.doi.org/10.1021/jp990248e
29.
29.D. Hu, J. Yu, G. Padmanaban, S. Ramakrishna, and P. F. Barbara, Nano Lett. 2, 1121 (2002).
http://dx.doi.org/10.1021/nl015661o
30.
30.C. De Marco, E. Mele, A. Camposeo, R. Stabile, R. Cingolani, and D. Pisignano, Adv. Mater. 20, 4158 (2008).
31.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/95/26/10.1063/1.3275727
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Top: macroscopic assembly of REP fibers (a), (b). Insets highlight the corresponding microscopic geometry for the selected regions. Bottom: Microscopic assembly of (c) BEP, (d) REP, and (e) YEP fibers.

Image of FIG. 2.

Click to view

FIG. 2.

AFM micrograph of a REP fiber (average diameter 470 nm). Inset: Magnification of a straight segment of nanofiber with 130–180 nm features attributable to local agglomerations.

Image of FIG. 3.

Click to view

FIG. 3.

Polarized PL spectroscopy of single nanofiber. (a) Fluorescence micrograph of a YEP helix loop: The highlighted fiber segments, labeled as “A,” “B,” and “C” are individually investigated. The dashed lines indicates the nanofiber dynamic axes in the three probed regions. Scale . (b)–(d) (continuous lines) and (dotted lines) spectra by segment “A” (b), “B” (c), and “C” (d), respectively.

Image of FIG. 4.

Click to view

FIG. 4.

PL spectra from electrospun nanofibers (continuous lines) and reference spin-cast films (dotted lines) with same thickness, for (a) REP, (b) BEP, and (c) YEP. Insets: PL peak wavelength vs film thickness. Superimposed lines are guides for the eye.

Tables

Generic image for table

Click to view

Table I.

Average polymer MW, characteristics of the helical geometries, and emission BS with respect to corresponding reference films, for the three investigated light-emitting nanofibers. Data on geometries are averages calculated over at least ten helix loops, on ten different fibers.

Loading

Article metrics loading...

/content/aip/journal/apl/95/26/10.1063/1.3275727
2009-12-28
2014-04-21

Abstract

Single electrospun nanofibers of light-emitting conjugated polymers hierarchically assemble at nano- to macroscopic lengthscales in various helical morphologies. At nanoscopic lengthscales, molecular chains follow the microscopic assembly, prevalently aligning along the fiber dynamic axis, as demonstrated by polarized photoluminescence spectroscopy. The role of molecular weight in the resulting assembling and optical properties is highlighted and discussed. Nanofibers based on the heaviest polymer exhibit the most stretched helical geometries and the highest suppression of the excitonic energy migration, resulting in the most blue-shifted photoluminescence with respect to thin films.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/95/26/1.3275727.html;jsessionid=lme4v6qh7hn4.x-aip-live-03?itemId=/content/aip/journal/apl/95/26/10.1063/1.3275727&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Hierarchical assembly of light-emitting polymer nanofibers in helical morphologies
http://aip.metastore.ingenta.com/content/aip/journal/apl/95/26/10.1063/1.3275727
10.1063/1.3275727
SEARCH_EXPAND_ITEM