1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Trap-limited transport in rubrene transistors
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/95/26/10.1063/1.3276693
1.
1.V. Podzorov, E. Menard, A. Borissov, V. Kiryukhin, J. A. Rogers, and M. E. Gershenson, Phys. Rev. Lett. 93, 086602 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.086602
2.
2.I. N. Hulea, S. Fratini, H. Xie, C. L. Mulder, N. N. Iossad, G. Rastelli, S. Ciuchi, and A. F. Morpurgo, Nature Mater. 5, 982 (2006).
http://dx.doi.org/10.1038/nmat1774
3.
3.W. L. Kalb, K. Mattenberger, and B. Batlogg, Phys. Rev. B 78, 035334 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.035334
4.
4.C. Goldmann, C. Krellner, K. P. Pernstich, S. Haas, D. J. Gundlach, and B. Batlogg, J. Appl. Phys. 99, 034507 (2006).
http://dx.doi.org/10.1063/1.2170421
5.
5.H. Houili, J. D. Picon, L. Zuppiroli, and M. N. Bussac, J. Appl. Phys. 100, 023702 (2006).
http://dx.doi.org/10.1063/1.2214363
6.
6.N. Kirova and M. N. Bussac, Phys. Rev. B 68, 235312 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.235312
7.
7.M. E. Gershenson, V. Podzorov, and A. F. Morpurgo, Rev. Mod. Phys. 78, 973 (2006).
http://dx.doi.org/10.1103/RevModPhys.78.973
8.
8.V. Coropceanu and J. L. Bredas, Nature Mater. 5, 929 (2006).
http://dx.doi.org/10.1038/nmat1791
9.
9.L. Giordano, P. V. Sushko, G. Pacchioni, and A. L. Shluger, Phys. Rev. B 75, 024109 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.024109
10.
10.S. Suarez, F. Fleischli, M. Schaer, and L. Zuppiroli (unpublished).
11.
11.V. Radzig, in Physico-Chemical Phenomena in Thin Films and at Solid Surfaces, Thin Films and Nanostructures, edited by S. H. L. Leonid, I. Trakhtenberg, and O. J. Ilegbusi (Elsevier, Amsterdam, 2007), Vol. 34, pp. 231345.
http://dx.doi.org/10.1016/S1079-4050(06)34007-0
12.
12.J. W. Raymonda, J. S. Muenter, and W. A. Klemperer, J. Chem. Phys. 52, 3458 (1970).
http://dx.doi.org/10.1063/1.1673510
13.
13.R. W. Fessenden, A. Hitachi, and V. Nagarajan, J. Phys. Chem. 88, 107 (1984).
http://dx.doi.org/10.1021/j150645a027
14.
14.S. Tavazzi, A. Borghesi, A. Papagni, P. Spearman, L. Silvestri, A. Yassar, A. Camposeo, M. Polo, and D. Pisignano, Phys. Rev. B 75, 245416 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.245416
15.
15.E. A. Silinsh and V. Capek, Organic Molecular Crystals: Interacton Localization, and Transport Phenomena (AIP, New York, 1994).
16.
16.D. A. da Silva Filho, E. G. Kim, and J. L. Bredas, Adv. Mater. 17, 1072 (2005).
http://dx.doi.org/10.1002/adma.200401866
17.
17.D. C. Hoesterey and G. M. Letson, J. Phys. Chem. 24, 1609 (1963).
18.
18.P. M. Borsenberger, W. T. Gruenbaum, E. H. Magin, S. A. Visser, and D. E. Schildkraut, J. Polym. Sci., Part B: Polym. Phys. 37, 349 (1999).
http://dx.doi.org/10.1002/(SICI)1099-0488(19990215)37:4<349::AID-POLB8>3.0.CO;2-M
19.
19.K. H. Probst and N. Karl, Phys. Status Solidi A 27, 499 (1975).
http://dx.doi.org/10.1002/pssa.2210270219
20.
20.J. D. Picon, M. N. Bussac, and L. Zuppiroli, Phys. Rev. B 75, 235106 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.235106
21.
21.M. N. Bussac, J. D. Picon, and L. Zuppiroli, Europhys. Lett. 66, 392 (2004).
http://dx.doi.org/10.1209/epl/i2003-10218-8
22.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/95/26/10.1063/1.3276693
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Hole trap depth in rubrene due to an interfacial dipole as a function of the static dielectric constant of the gate oxide for various dipole strengths.

Image of FIG. 2.

Click to view

FIG. 2.

Effects of (a) the bare transfer integral and (b) the interface trap dipole strength on the estimated trap-controlled mobility as a function of the gate insulator static dielectric constant. The error bars show the ranges of experimental data reported by Hulea et al. from Ref. 2.

Tables

Generic image for table

Click to view

Table I.

Rubrene transfer integral reduction factors due to electronic polarization , intramolecular phonons , and Fröhlich surface polaron effects calculated in this work based on the theoretical framework used for pentacene transistors in Ref. 5, resulting renormalized transfer integral using the quantum chemistry calculations of the bare transfer integral from Ref. 16, calculated trap depth of an interface defect with a dipole moment of 3.0 D, and estimated mobility with an interface trap density of . Note that a reduction in the effective transfer integral is equivalent to an increase in the effective mass .

Loading

Article metrics loading...

/content/aip/journal/apl/95/26/10.1063/1.3276693
2009-12-31
2014-04-21

Abstract

The charge carriermobility in the transport channel of an organic transistor is estimated within the framework of a trap-and-release model. The model accounts for the observed dependence of the mobility on the dielectric constant of the gate insulator. This dependence is attributed to both the effective mass of the carrier and the energetic depth of transport traps due to interface defects being functions of . These results are used to describe the critical role of the interface between the organic semiconductor and the dielectric material in governing charge transport in organic transistors.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/95/26/1.3276693.html;jsessionid=1r94smupcmryg.x-aip-live-06?itemId=/content/aip/journal/apl/95/26/10.1063/1.3276693&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Trap-limited transport in rubrene transistors
http://aip.metastore.ingenta.com/content/aip/journal/apl/95/26/10.1063/1.3276693
10.1063/1.3276693
SEARCH_EXPAND_ITEM