1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Probing of carrier behavior in organic electroluminescent diode using electric field induced optical second-harmonic generation measurement
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/95/26/10.1063/1.3277155
1.
1.C. W. Tang and S. A. Vanslyke, Appl. Phys. Lett. 51, 913 (1987).
http://dx.doi.org/10.1063/1.98799
2.
2.Z. Y. Xie, L. S. Hung, and S. T. Lee, Appl. Phys. Lett. 79, 1048 (2001).
http://dx.doi.org/10.1063/1.1390479
3.
3.S. Lee, C. H. Chung, and S. M. Cho, Synth. Met. 126, 269 (2002).
http://dx.doi.org/10.1016/S0379-6779(01)00568-9
4.
4.S. -S. Lee, D. Ko, C. -H. Chung, and S. M. Cho, Synth. Met. 128, 51 (2002).
http://dx.doi.org/10.1016/S0379-6779(01)00662-2
5.
5.M. Stößel, J. Staudigel, F. Steuber, J. Blässing, J. Simmerer, A. Winnacker, H. Neuner, D. Metzdorf, H. -H. Johannes, and W. Kowalsky, Synth. Met. 111, 19 (2000).
http://dx.doi.org/10.1016/S0379-6779(99)00406-3
6.
6.S. F. J. Appleyard, S. R. Day, R. D. Pickford, and M. R. Willis, J. Mater. Chem. 10, 169 (2000).
http://dx.doi.org/10.1039/a903708j
7.
7.L. S. Hung and C. H. Chen, Mater. Sci. Eng., R. 39, 143 (2002).
http://dx.doi.org/10.1016/S0927-796X(02)00093-1
8.
8.Conjugated Polymer and Molecular Interfaces: Science and Technology for Photonic and Optoelectronic Applications, edited by W. R. Salaneck, K. Seki, A. Kahn, and J. -J. Pireaux (Marcel Decker, New York, 2001).
9.
9.W. Brütting, S. Berleb, and A. G. Mückl, Org. Electron. 2, 1 (2001).
http://dx.doi.org/10.1016/S1566-1199(01)00009-X
10.
10.P. E. Burrows and S. R. Forrest, Appl. Phys. Lett. 64, 2285 (1994).
http://dx.doi.org/10.1063/1.111645
11.
11.P. E. Burrows, Z. Shen, V. Bulovic, D. M. McCarty, S. R. Forrest, J. A. Cronin, and M. E. Tompson, J. Appl. Phys. 79, 7991 (1996).
http://dx.doi.org/10.1063/1.362350
12.
12.S. M. Sze, Physics of Semiconductor Devices, 2nd ed. (Wiley, New York, 1981).
13.
13.Dielectric relaxation time of Alq3 is estimated as with and relative dielectric constant (mobility , and intrinsic carrier density ).
14.
14. , and after A. S. Grove, Physics and Technology of Semiconductor Devices (Wiley, New York, 1967).
15.
15.M. A. Lampert, Current Injection in Solids (Academic, New York, 1970).
17.
17.C. D. Dimitrakopoulos and P. R. L. Malenfant, Adv. Mater. 14, 99 (2002).
http://dx.doi.org/10.1002/1521-4095(20020116)14:2<99::AID-ADMA99>3.0.CO;2-9
18.
18.H. Sirringhaus, Adv. Mater. 17, 2411 (2005).
http://dx.doi.org/10.1002/adma.200501152
19.
19.T. Manaka, E. Lim, R. Tamura, and M. Iwamoto, Nat. Photonics 1, 581 (2007).
http://dx.doi.org/10.1038/nphoton.2007.172
20.
20.E. Lim, T. Manaka, R. Tamura, and M. Iwamoto, Jpn. J. Appl. Phys., Part 1 45, 3712 (2006).
http://dx.doi.org/10.1143/JJAP.45.3712
21.
21.R. Tamura, E. Lim, T. Manaka, and M. Iwamoto, J. Appl. Phys. 100, 114515 (2006).
http://dx.doi.org/10.1063/1.2372433
22.
22.T. Manaka, F. Liu, M. Weis, and M. Iwamoto, Phys. Rev. B 78, 121302(R) (2008).
http://dx.doi.org/10.1103/PhysRevB.78.121302
23.
23.D. Yamada, T. Manaka, E. Lim, R. Tamura, and M. Iwamoto, J. Appl. Phys. 103, 084118 (2008).
http://dx.doi.org/10.1063/1.2907965
24.
24.M. Weis, T. Manaka, and M. Iwamoto, J. Appl. Phys. 105, 024505 (2009).
http://dx.doi.org/10.1063/1.3062601
25.
25.Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).
26.
26.R. Tamura, E. Lim, T. Manaka, and M. Iwamoto, Jpn. J. Appl. Phys., Part 1 46, 2709 (2007).
http://dx.doi.org/10.1143/JJAP.46.2709
27.
27.Y. Suzue, T. Manaka, and M. Iwamoto, Jpn. J. Appl. Phys., Part 1 44, 561 (2005).
http://dx.doi.org/10.1143/JJAP.44.561
28.
28.Y. Ohshima, H. Kohn, E. Lim, T. Manaka, and M. Iwamoto, Jpn. J. Appl. Phys., Part 1 47, 1297 (2008).
http://dx.doi.org/10.1143/JJAP.47.1297
http://aip.metastore.ingenta.com/content/aip/journal/apl/95/26/10.1063/1.3277155
Loading
/content/aip/journal/apl/95/26/10.1063/1.3277155
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/95/26/10.1063/1.3277155
2009-12-30
2014-12-22

Abstract

By using the electric field induced optical second-harmonic generation (EFISHG) measurements, we probed the transient electric field in a double-layer indium zinc oxide (IZO)/N, , (Alq3)/Al electroluminescent (EL) diode. Results evidently showed that EL was initiated by the injected hole transport across layer, and holes accumulated at the interface while EL was enhanced. Analysis based on the Maxwell–Wagner effect model well accounted for the hole accumulation. EFISHG measurement is useful as a tool for probing carrier behavior in organic ELdevices.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/95/26/1.3277155.html;jsessionid=807uppl5lfuaj.x-aip-live-03?itemId=/content/aip/journal/apl/95/26/10.1063/1.3277155&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Probing of carrier behavior in organic electroluminescent diode using electric field induced optical second-harmonic generation measurement
http://aip.metastore.ingenta.com/content/aip/journal/apl/95/26/10.1063/1.3277155
10.1063/1.3277155
SEARCH_EXPAND_ITEM