1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Bio-organic field effect transistors based on crosslinked deoxyribonucleic acid (DNA) gate dielectric
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/95/26/10.1063/1.3278592
1.
1.J. Grote, E. Heckman, J. Hagen, P. Yaney, D. Diggs, G. Subramanyam, R. Nelson, J. Zetts, D. Zang, B. Singh, N. S. Sariciftci, and F. Hopkins, Proc. SPIE 6117, 61170J (2006).
http://dx.doi.org/10.1117/12.660421
2.
2.M. Stroscio and M. Dutta, Proc. IEEE 93, 1772 (2005).
http://dx.doi.org/10.1109/JPROC.2005.853543
3.
3.G. Subramanyam, E. Heckman, J. Grote, and F. Hopkins, IEEE Microw. Wirel. Compon. Lett. 15, 232 (2005).
http://dx.doi.org/10.1109/LMWC.2005.845705
4.
4.J. Hagen, W. Li, A. Steckl, J. Grote, and K. Hopkins, Appl. Phys. Lett. 88, 171109 (2006).
http://dx.doi.org/10.1063/1.2197973
5.
5.B. Singh, N. S. Sariciftci, J. Grote, and F. Hopkins, J. Appl. Phys. 100, 024514 (2006).
http://dx.doi.org/10.1063/1.2220488
6.
6.P. Stadler, K. Oppelt, B. Singh, J. Grote, R. Schwödiauer, S. Bauer, H. Piglmayer-Brezina, D. Bäuerle, and N. S. Sariciftci, Org. Electron. 8, 648 (2007).
http://dx.doi.org/10.1016/j.orgel.2007.05.003
7.
7.J. Grote, E. Heckman, J. Hagen, P. Yaney, D. Diggs, G. Subramanyam, R. Nelson, J. Zetts, D. Zang, B. Singh, N. S. Sariciftci, and F. Hopkins, Proc. SPIE 6117, 0J1 (2006).
8.
8.E. Heckman, P. Yaney, J. Grote, F. Hopkins, and M. Tomczak, Proc. SPIE 6117, 0K1 (2006).
9.
9.E. Heckman, P. Yaney, J. Grote, and F. Hopkins, Proc. SPIE 6401, 640108 (2006).
http://dx.doi.org/10.1117/12.692619
10.
10.E. Heckman, J. Grote, F. Hopkins, and P. Yaney, Appl. Phys. Lett. 89, 181116 (2006).
http://dx.doi.org/10.1063/1.2378400
11.
11.B. Singh, N. S. Sariciftci, and J. Grote, “Bio-organic Optoelectronic Devices Using DNA,” Adv. Polym. Sci. (to be published).
12.
12.M. Egginger, M. Irimia-Vladu, R. Schwödiauer, A. Tanda, I. Frischauf, S. Bauer, and N. S. Sariciftci, Adv. Mater. 20, 1018 (2008).
http://dx.doi.org/10.1002/adma.200701479
13.
13.L. Wang, J. Yoshida, N. Ogata, S. Sasaki, and T. Kajiyama, Chem. Mater. 13, 1273 (2001).
http://dx.doi.org/10.1021/cm000869g
14.
14.G. Zhang, L. Wang, J. Yoshida, and N. Ogata, Proc. SPIE 4580, 337 (2001).
http://dx.doi.org/10.1117/12.444982
15.
15.J. Grote, N. Ogata, D. Diggs, and F. Hopkins, Proc. SPIE 4991, 621 (2003).
http://dx.doi.org/10.1117/12.485827
16.
16.E. Heckman, J. Hagen, P. Yaney, J. Grote, and K. Hopkins, Appl. Phys. Lett. 87, 211115 (2005).
http://dx.doi.org/10.1063/1.2135205
17.
17.S. M. Sze, Physics of Semiconductor Devices, 2nd ed. (Wiley, New York, 1981).
18.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/95/26/10.1063/1.3278592
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Room temperature capacitance-frequency characteristics of the MIM and MIS devices.

Image of FIG. 2.

Click to view

FIG. 2.

(a) Diagram of the n-channel BiOFET device geometry. (b) Output characteristics of BiOFET with as a semiconductor with crosslinked DNA-CTMA film as a dielectric at different gate voltages. (c) Transfer characteristics at . Inset: Transfer characteristics of BiOFET with as a semiconductor with non-crosslinked DNA-CTMA film as a dielectric.

Image of FIG. 3.

Click to view

FIG. 3.

(a) Diagram of the p-channel BiOFET device geometry. (b) Output characteristics of BiOFET with as a semiconductor with crosslinked DNA-CTMA film as a dielectric at different gate voltages. (c) Transfer characteristics at . Inset: Transfer characteristics of BiOFET with as a semiconductor with non-crosslinked DNA-CTMA film as a dielectric.

Loading

Article metrics loading...

/content/aip/journal/apl/95/26/10.1063/1.3278592
2009-12-29
2014-04-18

Abstract

Using DNA-based biopolymers purified from salmon waste, as an insulating layer, bio-organic field effect transistor (BiOFET)devices were fabricated. Such devices exhibit current-voltage characteristics with low operational voltages as compared with using other organic dielectrics. The observed hysteresis in transfer characteristics of such BiOFETs can be reduced using a crosslinking process. Such crosslinked DNA complex is used as a gate dielectric in n-type as well as p-type -sexithiophene (T6) based BiOFETs.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/95/26/1.3278592.html;jsessionid=g47o08i8p35rn.x-aip-live-01?itemId=/content/aip/journal/apl/95/26/10.1063/1.3278592&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Bio-organic field effect transistors based on crosslinked deoxyribonucleic acid (DNA) gate dielectric
http://aip.metastore.ingenta.com/content/aip/journal/apl/95/26/10.1063/1.3278592
10.1063/1.3278592
SEARCH_EXPAND_ITEM