1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Imbalanced charge mobility in oxygen treated polythiophene/fullerene based bulk heterojunction solar cells
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/95/26/10.1063/1.3279135
1.
1.C. J. Brabec, N. Sariciftci, and J. C. Hummelen, Adv. Funct. Mater. 11, 15 (2001).
http://dx.doi.org/10.1002/1616-3028(200102)11:1<15::AID-ADFM15>3.0.CO;2-A
2.
2.I. Riedel, J. Parisi, V. Dyakonov, L. Lutsen, D. Vanderzande, and J. C. Hummelen, Adv. Funct. Mater. 14, 38 (2004).
http://dx.doi.org/10.1002/adfm.200304399
3.
3.G. M. Ng, E. L. Kietzke, T. Kietzke, L. W. Tan, P. K. Liew, and F. R. Zhu, Appl. Phys. Lett. 90, 103505 (2007).
http://dx.doi.org/10.1063/1.2711657
4.
4.J. K. Lee, W. L. Ma, C. J. Brabec, J. Yuen, J. S. Moon, J. Y. Kim, K. Lee, G. C. Bazan, and A. J. Heeger, J. Am. Chem. Soc. 130, 3619 (2008).
http://dx.doi.org/10.1021/ja710079w
5.
5.S. H. Jin, B. V. K. Naidu, H. S. Jeon, S. M. Park, J. S. Park, S. C. Kim, J. W. Lee, and Y. S. Gal, Sol. Energy Mater. Sol. Cells 91, 1187 (2007).
http://dx.doi.org/10.1016/j.solmat.2007.04.001
6.
6.Y. Kim, S. Cook, S. M. Tuladhar, S. A. Choulis, J. Nelson, J. R. Durrant, D. D. C. Bradley, M. Giles, I. Mcculloch, C. S. Ha, and M. Ree, Nature Mater. 5, 197 (2006).
http://dx.doi.org/10.1038/nmat1574
7.
7.G. Li, V. Shrotriya, J. Huang, Y. Yao, T. Moriarty, K. Emery, and Y. Yang, Nature Mater. 4, 864 (2005).
http://dx.doi.org/10.1038/nmat1500
8.
8.G. Juška, K. Arlauskas, M. Viliunas, and J. Kocka, Phys. Rev. Lett. 84, 4946 (2000).
http://dx.doi.org/10.1103/PhysRevLett.84.4946
9.
9.G. Juška, N. Nekrasas, K. Arlauskas, J. Stuchlik, A. Fejfar, and J. Kocka, J. Non-Cryst. Solids 338, 353 (2004).
http://dx.doi.org/10.1016/j.jnoncrysol.2004.02.072
10.
10.A. J. Mozer, N. S. Sarififtci, L. Lutsen, D. Vanderzande, R. Osterbacka, M. Westerling, and G. Juška, Appl. Phys. Lett. 86, 112104 (2005).
http://dx.doi.org/10.1063/1.1882753
11.
11.G. Dennler, A. J. Mozer, G. Juska, A. Pivrikas, R. Osterbacka, A. Fuchsbaur, and N. S. Sarififtci, Org. Electron. 7, 229 (2006).
http://dx.doi.org/10.1016/j.orgel.2006.02.004
12.
12.G. Juska, K. Arlauskas, M. Viliunas, K. Genevicius, R. Osterbacka, and H. Stubb, Phys. Rev. B 62, R16235 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.R16235
13.
13.L. Mattias Andersson, F. Zhang, and O. Inganas, Appl. Phys. Lett. 89, 142111 (2006).
http://dx.doi.org/10.1063/1.2360199
14.
14.A. Pivrikas, N. S. Sariciftci, G. Juska, and R. Osterbacka, Prog. Photovoltaics 15, 677 (2007).
http://dx.doi.org/10.1002/pip.791
15.
15.W. Tang, C. Vijila, M. Liu, Z. Chen, and L. Ke, ACS Appl. Mater. Interfaces 1, 1467 (2009).
http://dx.doi.org/10.1021/am900144b
16.
16.G. Sliauzys, G. Juska, K. Arlauskas, A. Pivrikas, R. Osterbacka, M. Scharber, A. Mozer, and N. S. Sariciftci, Thin Solid Films 511, 224 (2006).
http://dx.doi.org/10.1016/j.tsf.2005.12.103
17.
17.J. Schafferhans, A. Baumann, C. Deibel, and V. Dyakonov, Appl. Phys. Lett. 93, 093303 (2008).
http://dx.doi.org/10.1063/1.2978237
18.
18.K. Norrman and F. C. Krebs, Sol. Energy Mater. Sol. Cells 90, 213 (2006).
http://dx.doi.org/10.1016/j.solmat.2005.03.004
19.
19.M. Jørgensen, K. Norrman, and F. C. Krebs, Sol. Energy Mater. Sol. Cells 92, 686 (2008).
http://dx.doi.org/10.1016/j.solmat.2008.01.005
http://aip.metastore.ingenta.com/content/aip/journal/apl/95/26/10.1063/1.3279135
Loading
/content/aip/journal/apl/95/26/10.1063/1.3279135
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/95/26/10.1063/1.3279135
2009-12-29
2014-11-22

Abstract

The effect of oxygen induced traps on charge mobility in bulk heterojunctionsolar cells using poly(3-hexylthiophene) (P3HT):l-(3-methoxycarbonyl)-propyl-l-phenyl-(6, 6) methanofullerene (PCBM) blend have been studied using photoinduced charge extraction by linearly increasing voltage (PhotoCELIV) technique. The solar cells exposed to oxygen exhibit dual PhotoCELIV peaks, whereas the solar cell without oxygen treatment show single PhotoCELIV peak with the charge mobility of the order of . It is demonstrated that the oxygen treatment imbalance the charge mobility in the P3HT/PCBM photoactive layer, which affects the power conversion efficiency and lifetime of the solar cell. The single PhotoCELIV peak for the device without oxygen treatment indicates that the charge mobility is balanced, that causes the overlapping of electron and hole transients.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/95/26/1.3279135.html;jsessionid=5ln9f16baoogc.x-aip-live-06?itemId=/content/aip/journal/apl/95/26/10.1063/1.3279135&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Imbalanced charge mobility in oxygen treated polythiophene/fullerene based bulk heterojunction solar cells
http://aip.metastore.ingenta.com/content/aip/journal/apl/95/26/10.1063/1.3279135
10.1063/1.3279135
SEARCH_EXPAND_ITEM