1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
In situ measurement of the internal luminescence quantum efficiency in organic light-emitting diodes
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/95/26/10.1063/1.3279144
1.
1.R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Bredas, M. Lögdlund, and W. R. Salaneck, Nature (London) 397, 121 (1999).
http://dx.doi.org/10.1038/16393
2.
2.K. A. Neyts, J. Opt. Soc. Am. A Opt. Image Sci. Vis 15, 962 (1998).
http://dx.doi.org/10.1364/JOSAA.15.000962
3.
3.L. H. Smith, J. A. E. Wasey, I. D. W. Samuel, and W. L. Barnes, Adv. Funct. Mater. 15, 1839 (2005);
http://dx.doi.org/10.1002/adfm.200500283
3.S. Nowy, B. C. Krummacher, J. Frischeisen, N. A. Reinke, and W. Brütting, J. Appl. Phys. 104, 123109 (2008).
http://dx.doi.org/10.1063/1.3043800
4.
4.B. C. Krummacher, S. Nowy, J. Frischeisen, M. Klein, and W. Brütting, Org. Electron. 10, 478 (2009).
http://dx.doi.org/10.1016/j.orgel.2009.02.002
5.
5.N. C. Greenham, I. D. W. Samuel, G. R. Hayes, R. T. Phillips, Y. A. R. R. Kessener, S. C. Moratti, A. B. Holmes, and R. H. Friend, Chem. Phys. Lett. 241, 89 (1995).
http://dx.doi.org/10.1016/0009-2614(95)00584-Q
6.
6.P. E. Burrows, Z. Shen, V. Bulovic, D. M. McCarty, S. R. Forrest, J. A. Cronin, and M. E. Thompson, J. Appl. Phys. 79, 7991 (1996).
http://dx.doi.org/10.1063/1.362350
7.
7.N. C. Greenham, R. H. Friend, and D. D. C. Bradley, Adv. Mater. 6, 491 (1994);
http://dx.doi.org/10.1002/adma.19940060612
7.J. -S. Kim, P. K. H. Ho, N. C. Greenham, and R. H. Friend, J. Appl. Phys. 88, 1073 (2000).
http://dx.doi.org/10.1063/1.373779
8.
8.N. Danz, R. Waldhäusl, A. Bräuer, and R. Kowarschik, J. Opt. Soc. Am. B 19, 412 (2002).
http://dx.doi.org/10.1364/JOSAB.19.000412
9.
9.M. C. Gather, M. Flämmich, N. Danz, D. Michaelis, and K. Meerholz, Appl. Phys. Lett. 94, 263301 (2009).
http://dx.doi.org/10.1063/1.3159836
10.
10.P. Zacharias, M. C. Gather, M. Rojahn, O. Nuyken, and K. Meerholz, Angew. Chem. Int. Ed. Engl. 46, 4388 (2007).
http://dx.doi.org/10.1002/anie.200605055
11.
11.M. Flämmich, N. Danz, D. Michaelis, A. Bräuer, M. C. Gather, J. H.-W. M. Kremer, and K. Meerholz, Appl. Opt. 48, 1507 (2009).
http://dx.doi.org/10.1364/AO.48.001507
12.
12.An approximation of refractive index and extinction coefficient within the wavelength region is ( [nm]/100): substrate: , ; ITO: , ; PEDOT:PSS: , ; HTL: , ; EML: , ; Ba/Ag-Cathode: The Barium layer was neglected and the optical properties of Silver were taken from Handbook of Optical Constants of Solids, E. D. Palik edited by (Academic, New York, 1991).
13.
13.Details on this measurement will be reported elsewhere.
14.
14.B. H. Wallikewitz, M. de la Rosa, J. H.-W. M. Kremer, D. Hertel, and K. Meerholz, Adv. Mater. 21 (to be published). DOI:10.1002/adma.2009024510
http://dx.doi.org/10.1002/adma.200902451
15.
15.C. -L. Lin, T. -Y. Cho, C. -H. Chan, and C. -C. Wu, Appl. Phys. Lett. 88, 081114 (2006).
http://dx.doi.org/10.1063/1.2178485
16.
16.K. Walzer, B. Maennig, M. Pfeiffer, and K. Leo, Chem. Rev. 107, 1233 (2007).
http://dx.doi.org/10.1021/cr050156n
17.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/95/26/10.1063/1.3279144
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Structure of the OLEDs used in this study. The thickness of the EML is varied between 10 and 264 nm. The exponentially decaying profile of the emission zone (PEZ) is schematically shown.

Image of FIG. 2.

Click to view

FIG. 2.

Measured (left) and modeled (right) emission spectra of the OLED with 56 nm EML thickness for TE (transversal-electric, upper) and TM (transversal-magnetic, lower) polarization. Data are normalized to the highest experimental intensity obtained. Note that the mean relative deviation between simulation and experiment is below 2% within the range 430–560 nm and 0°–70°.

Image of FIG. 3.

Click to view

FIG. 3.

For the values (dashed), (solid), (dotted), and (dashed-dotted) are shown: (a) relative transition rate of a representative emitter embedded 8 nm from the HTL-EML interface (corresponding to the width of the PEZ) in the OLED stack shown in Fig. 1; (b) measured 0°-current efficiencies at a current density of of OLEDs with different EML thicknesses (●, with confidence intervals smaller than the dot size) and simulated 0°-luminous intensity.

Loading

Article metrics loading...

/content/aip/journal/apl/95/26/10.1063/1.3279144
2009-12-29
2014-04-18

Abstract

The internal luminescencequantum efficiency is one limiting factor for the performance of organic light-emitting diodes.Photoluminescencemeasurements are frequently used to estimate but these neglect effects of the local environment of the emissive sites and the electrical excitation mechanism. We present a method for the in situmeasurement of under electrical operation. The current efficiency of several devices with different emitter-cathode distances is quantitatively compared. Precise optical simulation allows determining without additional assumptions.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/95/26/1.3279144.html;jsessionid=chmz7yhcqv6y.x-aip-live-03?itemId=/content/aip/journal/apl/95/26/10.1063/1.3279144&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: In situ measurement of the internal luminescence quantum efficiency in organic light-emitting diodes
http://aip.metastore.ingenta.com/content/aip/journal/apl/95/26/10.1063/1.3279144
10.1063/1.3279144
SEARCH_EXPAND_ITEM