1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
CdTe nanoparticles synthesized by laser ablation
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/95/3/10.1063/1.3171941
1.
1.S. V. Gaponenko, Optical Properties of Semiconductor Nanocrystals (Cambridge University Press, Cambridge, 1998).
2.
2.M. Gao, S. Kirstein, H. Möhwald, A. L. Rogach, A. Kornowski, A. Eychmüller, and H. Weller, J. Phys. Chem. B 102, 8360 (1998).
http://dx.doi.org/10.1021/jp9823603
3.
3.A. L. Rogach, Mater. Sci. Eng., B 69, 435 (2000).
http://dx.doi.org/10.1016/S0921-5107(99)00231-7
4.
4.M. Bruchez, Jr., M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, Science 281, 2013 (1998).
http://dx.doi.org/10.1126/science.281.5385.2013
5.
5.N. Lequeux and B. Dubertret, NanoBiotechnology 1, 279 (2005).
http://dx.doi.org/10.1007/s12030-005-0040-x
6.
6.E. Tekin, P. J. Smith, S. Hoeppener, A. M. J. van der Berg, A. S. Susha, A. L. Rogach, J. Feldmann, and U. S. Schubert, Adv. Funct. Mater. 17, 23 (2007).
http://dx.doi.org/10.1002/adfm.200600587
7.
7.N. P. Gaponik, D. V. Talapin, and A. L. Rogach, Phys. Chem. Chem. Phys. 1, 1787 (1999).
http://dx.doi.org/10.1039/a808619b
8.
8.R. Meier, R. C. Word, A. Nadarajah, and R. Könenkamp, Phys. Rev. B 77, 195314 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.195314
9.
9.M. Gao, C. Lesser, S. Kirstein, H. Möhwald, A. Rogach, and H. Weller, J. Appl. Phys. 87, 2297 (2000).
http://dx.doi.org/10.1063/1.372177
10.
10.P. T. K. Chin, J. W. Stouwdam, S. S. van Bavel, and R. A. J. Janssen, Nanotechnology 19, 205602 (2008).
http://dx.doi.org/10.1088/0957-4484/19/20/205602
11.
11.C. B. Murray, D. J. Norris, and M. G. Bawendi, J. Am. Chem. Soc. 115, 8706 (1993).
http://dx.doi.org/10.1021/ja00072a025
12.
12.A. L. Rogach, L. Katsikas, A. Kornowski, D. Su, A. Eychmüller, and H. Weller, Ber. Bunsenges. Phys. Chem. 101, 1668 (1997).
13.
13.Z. A. Peng and X. Peng, J. Am. Chem. Soc. 123, 183 (2001).
http://dx.doi.org/10.1021/ja003633m
14.
14.I. G. Dance, A. Choy, and M. L. Scudder, J. Am. Chem. Soc. 106, 6285 (1984).
http://dx.doi.org/10.1021/ja00333a030
15.
15.B. Xing, W. -W. Li, and K. Sung, Mater. Lett. 62, 3178 (2008).
http://dx.doi.org/10.1016/j.matlet.2008.02.013
16.
16.N. C. Greenham, X. Peng, and A. P. Alivisatos, Phys. Rev. B 54, 17628 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.17628
17.
17.G. W. Yang, Prog. Mater. Sci. 52, 648 (2007);
http://dx.doi.org/10.1016/j.pmatsci.2006.10.016
17.A. V. Kabashin, M. Meunier, C. Kingston, and J. H. T. Luong, J. Phys. Chem. B 107, 4527 (2003).
http://dx.doi.org/10.1021/jp034345q
18.
18.Y. Xin, N. D. Browning, S. Rujirawat, S. Sivananthan, Y. P. Chen, P. D. Nellist, and S. J. Pennycook, J. Appl. Phys. 84, 4292 (1998).
http://dx.doi.org/10.1063/1.368647
19.
19.D. Strickland and G. Mourou, Opt. Commun. 56, 219 (1985).
http://dx.doi.org/10.1016/0030-4018(85)90120-8
20.
20.P. Stampfli and K. H. Bennemann, Phys. Rev. B 49, 7299 (1994).
http://dx.doi.org/10.1103/PhysRevB.49.7299
21.
21.G. Bardi, K. Ieronimakis, and G. Trionfetti, Thermochim. Acta 129, 341 (1988).
http://dx.doi.org/10.1016/0040-6031(88)87350-7
22.
22.J. Perrière, C. Boulmer-Leborgne, R. Benzerga, and S. Tricot, J. Phys. D 40, 7069 (2007).
http://dx.doi.org/10.1088/0022-3727/40/22/031
23.
23.E. Millon, J. Perrière, R. M. Defourneau, D. Defourneau, O. Albert, and J. Etchepare, Appl. Phys. A: Mater. Sci. Process. 77, 73 (2003).
http://dx.doi.org/10.1007/s00339-002-1958-7
24.
24.O. Albert, S. Roger, Y. Glinec, J. C. Loulergue, J. Etchepare, C. Boulmer-Leborgne, J. Perrière, and E. Million, Appl. Phys. A: Mater. Sci. Process. 76, 319 (2003).
http://dx.doi.org/10.1007/s00339-002-1815-8
25.
25.L. E. Brus, J. Chem. Phys. 80, 4403 (1984).
http://dx.doi.org/10.1063/1.447218
26.
26.L. E. Brus, IEEE J. Quantum Electron. 22, 1909 (1986).
http://dx.doi.org/10.1109/JQE.1986.1073184
27.
27.JCPDS Card No. 15–0770.
28.
28.J. W. Edington, Typical Electron Microscope Investigations (Macmillan, London, 1976).
http://aip.metastore.ingenta.com/content/aip/journal/apl/95/3/10.1063/1.3171941
Loading
/content/aip/journal/apl/95/3/10.1063/1.3171941
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/95/3/10.1063/1.3171941
2009-07-20
2014-12-19

Abstract

Nanoparticle generation by laser ablation of a solid target in a liquid environment is an easy, fast, and “green” method for a large scale production of nanomaterials with tailored properties. In this letter we report the synthesis of CdTenanoparticles by femtosecond laser [387 nm, 180 fs, 1 kHz, pulse ] ablation of the target material.Nanoparticles with diameters from up to were observed to be formed in the colloidal solution. Their size distribution follows the log-normal function with a statistical median diameter of ≈7.1 nm. Their crystal structure is the same as that of the bulk material (cubic zincblende) and they are slightly Cd-rich (Cd:Te percentage ratio ). Photoluminescence emission from the produced nanoparticles was detected in the deep red .

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/95/3/1.3171941.html;jsessionid=3e5gd5lwqs7sb.x-aip-live-03?itemId=/content/aip/journal/apl/95/3/10.1063/1.3171941&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: CdTe nanoparticles synthesized by laser ablation
http://aip.metastore.ingenta.com/content/aip/journal/apl/95/3/10.1063/1.3171941
10.1063/1.3171941
SEARCH_EXPAND_ITEM