1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Negative differential resistance based on electron injection/extraction in conducting organic films
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/95/6/10.1063/1.3202414
1.
1.J. C. Scott and L. D. Bozano, Adv. Mater. (Weinheim, Ger.) 19, 1452 (2007).
http://dx.doi.org/10.1002/adma.200602564
2.
2.J. Chen, W. Wang, M. A. Reed, A. M. Rawlett, D. W. Price, and J. M. Tour, Appl. Phys. Lett. 77, 1224 (2000).
http://dx.doi.org/10.1063/1.1289650
3.
3.J. Chen, M. A. Reed, A. M. Rawlett, and J. M. Tour, Science 286, 1550 (1999).
http://dx.doi.org/10.1126/science.286.5444.1550
4.
4.J. Gaudioso, L. J. Lauhon, and W. Ho, Phys. Rev. Lett. 85, 1918 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.1918
5.
5.L. P. Ma, S. M. Pyo, J. Y. Ouyang, Q. F. Yu, and Y. Yang, Appl. Phys. Lett. 82, 1419 (2003).
http://dx.doi.org/10.1063/1.1556555
6.
6.R. J. Tseng, J. Ouyang, C. -W. Chu, J. Huang, and Y. Yang, Appl. Phys. Lett. 88, 123506 (2006).
http://dx.doi.org/10.1063/1.2187407
7.
7.L. D. Bozano, B. W. Kean, M. Beinhoff, K. R. Carter, P. M. Rice, and J. C. Scott, Adv. Funct. Mater. 15, 1933 (2005).
http://dx.doi.org/10.1002/adfm.200500130
8.
8.L. D. Bozano, B. W. Kean, V. R. Deline, J. R. Salem, and J. C. Scott, Appl. Phys. Lett. 84, 607 (2004).
http://dx.doi.org/10.1063/1.1643547
9.
9.K. S. Yook, S. O. Jeon, C. W. Joo, J. Y. Lee, S. H. Kim, and J. Jang, Org. Electron. 10, 48 (2009).
http://dx.doi.org/10.1016/j.orgel.2008.10.002
10.
10.T. Zheng, W. C. H. Choy, and Y. Sun, Appl. Phys. Lett. 94, 123303 (2009).
http://dx.doi.org/10.1063/1.3099038
11.
11.W. -J. Yoon, S. -Y. Chung, P. R. Berger, and S. M. Asar, Appl. Phys. Lett. 87, 203506 (2005).
http://dx.doi.org/10.1063/1.2130395
12.
12.F. S. Tautz, Prog. Surf. Sci. 82, 479 (2007).
http://dx.doi.org/10.1016/j.progsurf.2007.09.001
13.
13.X. N. Xie, S. Sivaramakrishnan, Q. Song, X. Gao, P. K. H. Ho, C. K. Ong, and A. T. S. Wee, J. Phys. Chem. C 113, 3683 (2009).
http://dx.doi.org/10.1021/jp810850e
14.
14.M. S. Fuhrer, B. M. Kim, T. Durkop, and T. Brintlinger, Nano Lett. 2, 755 (2002).
http://dx.doi.org/10.1021/nl025577o
15.
15.K. Bradley, J. Cumings, A. Star, J. -C. P. Gabriel, and G. Gruner, Nano Lett. 3, 639 (2003).
http://dx.doi.org/10.1021/nl025941j
16.
16.N. Koch, ChemPhysChem 8, 1438 (2007).
http://dx.doi.org/10.1002/cphc.200700177
17.
17.X. N. Xie, Y. Xie, X. Gao, C. H. Sow, and A. T. S. Wee, Adv. Mater. (Weinheim, Ger.)21, 3016 (2009).
http://dx.doi.org/10.1002/adma.200900249
18.
18.J. Taborski, P. Väterlein, H. Dietz, U. Zimmermann, and E. Umbach, J. Electron Spectrosc. Relat. Phenom. 75, 129 (1995).
http://dx.doi.org/10.1016/0368-2048(95)02397-6
19.
19.J. B. Gustafsson, E. Moons, S. M. Widstrand, M. Gurnett, and L. S. O. Johansson, Surf. Sci. 572, 23 (2004).
http://dx.doi.org/10.1016/j.susc.2004.08.031
20.
20.J. B. Gustafsson, E. Moons, S. M. Widstrand, M. Gurnett, and L. S. O. Johansson, Surf. Sci. 572, 32 (2004).
http://dx.doi.org/10.1016/j.susc.2004.08.030
21.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/95/6/10.1063/1.3202414
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) Typical optical micrograph of PTCDA film (top) drop-cast onto Al from PTCDA dissolved in KOH aqueous solution, and schematic (bottom) of the Au/PTCDA/Al device configuration. curves collected for the Au/PTCDA/Al device using voltage scans of (b) −15 to 15 V, (c) 15 to −15 V, (d) 0 to 15 V, and (e) 0 to −15 V, respectively. An identical voltage scan rate was used for the above measurements. (f) Control curve collected at for PTCDA film free of KOH ionic species.

Image of FIG. 2.

Click to view

FIG. 2.

Rate-dependent NDR behavior observed in (a) −15 to 15 V, and (b) 15 to −15 V voltage scans with different voltage scan rates , respectively. In (a), only the 0 to 15 V range with the NDR peak is shown, and in (b) only the 0 to −15 V region with the NDR peaks is shown.

Image of FIG. 3.

Click to view

FIG. 3.

Energy diagram of the Au/PTCAD/Al device configuration. LUMO: lowest unoccupied molecular orbitals. HOMO: highest occupied molecular orbitals. (b) C -edge NEXAFS spectra collected for the PTCDA film at normal and grazing incidence, respectively. The above measurement was based on PTCDA film drop-cast on Al substrate from PTCDA molecules dissolved in KOH aqueous solution.

Loading

Article metrics loading...

/content/aip/journal/apl/95/6/10.1063/1.3202414
2009-08-10
2014-04-18

Abstract

This work reports a mechanism of negative differential resistance(NDR) observed for perylene-3,4,9,10-tetracarboxylic-3,4,9,10-dianhydride (PTCDA) films. The NDR is based on electron injection and extraction at the metal/PTCDA interface, and is governed by the joint effect of electronic and ionic components. Consequently, the NDR behavior exhibits a monotonous dependence on the voltage scan rate, and the number of NDR peaks is also sensitive to the work function of metal electrodes. The results provide further understanding on the diverse manifestation of NDR, and would be useful in organic electronic applications.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/95/6/1.3202414.html;jsessionid=38bqpvjpef0ah.x-aip-live-06?itemId=/content/aip/journal/apl/95/6/10.1063/1.3202414&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Negative differential resistance based on electron injection/extraction in conducting organic films
http://aip.metastore.ingenta.com/content/aip/journal/apl/95/6/10.1063/1.3202414
10.1063/1.3202414
SEARCH_EXPAND_ITEM