1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Control of electric current by graphene edge structure engineering
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/95/8/10.1063/1.3206915
1.
1.S. V. Morozov, K. S. Novoselov, M. I. Katsnelson, F. Schedin, D. C. Elias, J. A. Jaszczak, and A. K. Geim, Phys. Rev. Lett. 100, 016602 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.016602
2.
2.K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, Solid State Commun. 146, 351 (2008).
http://dx.doi.org/10.1016/j.ssc.2008.02.024
3.
3.A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrahn, F. Miao, and C. N. Lau, Nano Lett. 8, 902 (2008).
http://dx.doi.org/10.1021/nl0731872
4.
4.M. I. Katsnelson, K. S. Novoselov, and A. K. Geim, Nat. Phys. 2, 620 (2006).
http://dx.doi.org/10.1038/nphys384
5.
5.A. F. Young and P. Kim, Nat. Phys. 5, 222 (2009).
http://dx.doi.org/10.1038/nphys1198
6.
6.M. Fujita, K. Wakabayashi, K. Nakada, and K. Kusakabe, J. Phys. Soc. Jpn. 65, 1920 (1996).
http://dx.doi.org/10.1143/JPSJ.65.1920
7.
7.K. Nakada, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. B 54, 17954 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.17954
8.
8.K. Wakabayashi, M. Fujita, H. Ajiki, and M. Sigrist, Phys. Rev. B 59, 8271 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.8271
9.
9.Y. -W. Son, M. L. Cohen, and S. G. Louie, Phys. Rev. Lett. 97, 216803 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.216803
10.
10.K. Wakabayashi, Y. Takane, and M. Sigrist, Phys. Rev. Lett. 99, 036601 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.036601
11.
11.K. Wakabayashi, Y. Takane, M. Yamamoto, and M. Sigrist, Carbon 47, 124 (2009).
http://dx.doi.org/10.1016/j.carbon.2008.09.040
12.
12.M. Yamamoto, Y. Takane, and K. Wakabayashi, Phys. Rev. B 79, 125421 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.125421
13.
13.K. Wakabayashi, Phys. Rev. B 64, 125428 (2001).
http://dx.doi.org/10.1103/PhysRevB.64.125428
14.
14.H. Li, L. Wang, and Y. Zheng, J. Appl. Phys. 105, 013703 (2009).
http://dx.doi.org/10.1063/1.3054449
15.
15.J. Wurm, M. Wimmer, I. Adagadeli, K. Richter, and H. U. Baranger, arXiv:0906.4351v1 (2009).
16.
16.X. Jia, M. Hofmann, V. Meunier, B. G. Sumpter, J. Campos-Delgado, J. M. Rome-Herrera, H. Son, Y. -P. Hsieh, A. Reina, J. Kong, M. Terrones, and M. S. Dresselhaus, Science 323, 1701 (2009).
http://dx.doi.org/10.1126/science.1166862
17.
17.D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, J. R. Lomeda, A. Dimiev, B. K. Price, and J. M. Tour, Nature (London) 458, 872 (2009).
http://dx.doi.org/10.1038/nature07872
18.
18.L. Jiao, L. Zhang, X. Wang, G. Diankov, and H. Dai, Nature (London) 458, 877 (2009).
http://dx.doi.org/10.1038/nature07919
19.
19.T. Ando, Phys. Rev. B 44, 8017 (1991).
http://dx.doi.org/10.1103/PhysRevB.44.8017
http://aip.metastore.ingenta.com/content/aip/journal/apl/95/8/10.1063/1.3206915
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) AAA-junction (blue dotted line) and AZA-junction (red solid line). (b) ZAZ-junction (blue solid line) and ZZZ-junction (red dotted line). (c) Conductance as a function of energy in armchair ribbon junctions. The width of left and right ribbons are and . Conductance mostly remains unity in the AAA-junction while the zero conductance dip appears in the AZA-junction at for the single-channel energy regime . (d) Conductance as a function of energy in zigzag ribbon junctions. The width of left and right ribbons are and . Conductance mostly remains unity in the ZAZ-junction while several zero conductance dips appear in the ZZZ-junction at nonzero energies for the single-channel energy regime .

Image of FIG. 2.

Click to view

FIG. 2.

Number of zero conductance dips as a function of the width difference for , 50 and 70 in the ZZZ-junction. increases by two as by three except for small . Data for and 70 is slightly shifted downward for legibility.

Image of FIG. 3.

Click to view

FIG. 3.

(a) Armchair ribbon with partial edge cutting. The edge cuttings are classified into AA, AZ, and ZZ, (b) Conductance and (c) phase shift of transmission coefficient as a function of energy in the AA-, AZ-, and ZZ-cuts. The ribbon width is and the depth of edge cut is . Abrupt -phase jump of transmission coefficient verifies that the appearance of zero conductance dips is due to antiresonance.

Tables

Generic image for table

Click to view

Table I.

Appearance of zero conductance dips for the combination of ribbon and junction edge structures. A: denotes armchair, Z denotes zigzag, and * denotes not discussed in this letter.

Loading

Article metrics loading...

/content/aip/journal/apl/95/8/10.1063/1.3206915
2009-08-27
2014-04-25

Abstract

In graphenenanoribbonjunctions, the nearly perfect transmission occurs in some junctions while the zero conductance dips due to antiresonance appear in others. We have classified the appearance of zero conductance dips for all combinations of ribbon and junction edge structures. These transport properties do not attribute to the whole junction structure but the partial corner edge structure, which indicates that one can control the electric current simply by cutting a part of nanoribbon edge. The ribbon width is expected to be narrower than 10 nm in order to observe the zero conductance dips at room temperature.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/95/8/1.3206915.html;jsessionid=1m794ltjawhd3.x-aip-live-03?itemId=/content/aip/journal/apl/95/8/10.1063/1.3206915&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Control of electric current by graphene edge structure engineering
http://aip.metastore.ingenta.com/content/aip/journal/apl/95/8/10.1063/1.3206915
10.1063/1.3206915
SEARCH_EXPAND_ITEM