1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Micro-pixel array of organic light-emitting diodes applying imprinting technique with a polymer replica
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/95/9/10.1063/1.3216051
1.
1.C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett. 51, 913 (1987).
http://dx.doi.org/10.1063/1.98799
2.
2.L. Zhou, A. Wanga, S. Wu, J. Sun, S. Park, and T. N. Jackson, Appl. Phys. Lett. 88, 083502 (2006).
http://dx.doi.org/10.1063/1.2178213
3.
3.P. F. Tian, P. E. Burrows, and S. R. Forrest, Appl. Phys. Lett. 71, 3197 (1997).
http://dx.doi.org/10.1063/1.120288
4.
4.S. Y. Chou, P. R. Krauss, W. Zhang, L. J. Guo, and L. Zhuang, J. Vac. Sci. Technol. B 15, 2897 (1997).
http://dx.doi.org/10.1116/1.589752
5.
5.S. Y. Chou, P. R. Krauss, and P. J. Renstrom, Appl. Phys. Lett. 67, 3114 (1995).
http://dx.doi.org/10.1063/1.114851
6.
6.S. Y. Chou and P. Krauss, Microelectron. Eng. 35, 237 (1997).
http://dx.doi.org/10.1016/S0167-9317(96)00097-4
7.
7.X. Sun, L. Zhuang, W. Zhang, and S. Y. Chou, J. Vac. Sci. Technol. B 16, 3922 (1998).
http://dx.doi.org/10.1116/1.590437
8.
8.M. Colburn, S. Johnson, M. Stewart, S. Damle, B. J. Choi, T. Bailey, M. Wedlake, T. Michaelson, S. V. Sreenivasan, J. Ekert, and C. G. Willson, Proc. SPIE 3676, 379 (1999).
http://dx.doi.org/10.1117/12.351155
9.
9.L. J. Guo, Adv. Mater. 19, 495 (2007).
http://dx.doi.org/10.1002/adma.200600882
10.
10.H. Lee and G. Y. Jung, Microelectron. Eng. 77, 42 (2005).
http://dx.doi.org/10.1016/j.mee.2004.08.008
11.
11.S. H. Jeon, J. W. Kang, H. D. Park, J. J. Kim, J. R. Youn, J. Shin, J. H. Jeong, D. G. Choi, K. D. Kim, A. O. Altun, S. H. Kim, and Y. H. Lee, Appl. Phys. Lett. 92, 223307 (2008).
http://dx.doi.org/10.1063/1.2939554
12.
12.G. E. Jabbour, D. L. Mathine, B. Kippelen, and N. Peyghambarian, Electron. Lett. 33, 2070 (1997).
http://dx.doi.org/10.1049/el:19971396
13.
13.Y. Xia, E. Kim, X. M. Zhao, J. A. Rogers, M. Prentiss, and G. M. Whitesides, Science 273, 347 (1996).
http://dx.doi.org/10.1126/science.273.5273.347
14.
14.A. Ulman, Chem. Rev. (Washington, D.C.) 1996, 1533.
15.
15.H. Hiroshima, S. Inoue, N. Kasahara, and J. Taniguchi, Jpn. J. Appl. Phys., Part 1 41, 4173 (2002).
http://dx.doi.org/10.1143/JJAP.41.4173
16.
16.C. C. Wu, C. I. Wu, J. C. Sturm, and A. Kahn, Appl. Phys. Lett. 70, 1348 (1997).
http://dx.doi.org/10.1063/1.118575
17.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/95/9/10.1063/1.3216051
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Schematic illustration of the fabrication of a PDMS mold, and a hard stamp by UV imprinting. (a) The PDMS is poured on the master, and then cured in an oven to reverse the patterns of the master. (b) The PDMS mold can then be easily peeled off from the master since the PDMS has the property of elasticity and low surface energy. (c) After the fabrication of the mold, the UV curable polymer is dropped onto the PDMS mold. (d) To form micropatterns into the UV curable polymer, Ormocomp is closed with a glass as a substrate of the stamp. (e) UV light exposing and curing is performed with applying force by a UV imprinter. (f) Finally, a polymer stamp is fabricated, with the dimensions .

Image of FIG. 2.

Click to view

FIG. 2.

SEM images of (a) a fabricated stamp (b) imprinted patterns on AZ 1512 after exposing of electrode by RIE. (c) A pixel array made from AZ 1512. (d) An electrode image (AZ 1512) after RIE. (e) Imprinted patterns on MR I-7030 after exposing of electrode by RIE. (f) A pixel array made from MR I-7030. (e) An electrode image (MR I-7030) after RIE.

Image of FIG. 3.

Click to view

FIG. 3.

Optical microscopy images of emitting OLED with micro-pixel array using (a) AZ 1512 and (b) MR I-7030.

Image of FIG. 4.

Click to view

FIG. 4.

(a) Current density-voltage characteristics, luminance and (b) luminous efficiency and power efficiency.

Loading

Article metrics loading...

/content/aip/journal/apl/95/9/10.1063/1.3216051
2009-09-01
2014-04-16

Abstract

Efficient micro-pixel array of small molecule organic light-emitting diodes(OLEDs) has been fabricated by an imprinting technique which uses a polymer replica. To confirm the effect of the oxygen plasma for removing the residual layer, the performance of two kinds of OLEDs with varying thicknesses of resin as the micro-pixel array, have been compared. The measured results of the OLEDs have shown comparable device performances that are significantly characterized depending on the residues on the substrate. The performance of enhanced device has achieved efficiencies of 3.6 cd/A and 1.9 lm/W at .

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/95/9/1.3216051.html;jsessionid=1xck5p6jzbyqh.x-aip-live-02?itemId=/content/aip/journal/apl/95/9/10.1063/1.3216051&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Micro-pixel array of organic light-emitting diodes applying imprinting technique with a polymer replica
http://aip.metastore.ingenta.com/content/aip/journal/apl/95/9/10.1063/1.3216051
10.1063/1.3216051
SEARCH_EXPAND_ITEM