1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Vertical coupled double organic microcavities
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/95/9/10.1063/1.3216838
1.
1.C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, Phys. Rev. Lett. 69, 3314 (1992).
http://dx.doi.org/10.1103/PhysRevLett.69.3314
2.
2.M. S. Skolnick, T. A. Fisher, and D. M. Whittaker, Semicond. Sci. Technol. 13, 645 (1998).
http://dx.doi.org/10.1088/0268-1242/13/7/003
3.
3.M. S. Unlu and S. Strite, J. Appl. Phys. 78, 607 (1995).
http://dx.doi.org/10.1063/1.360322
4.
4.T. E. Sale, Vertical Cavity Surface Emitting Lasers (Wiley, New York, 1995).
5.
5.L. G. Connolly, D. G. Lidzey, R. Butté, A. M. Adawi, D. M. Whittaker, and M. S. Skolnick, Appl. Phys. Lett. 83, 5377 (2003).
http://dx.doi.org/10.1063/1.1637146
6.
6.J. K. Vahala, Nature (London) 424, 839 (2003).
http://dx.doi.org/10.1038/nature01939
7.
7.G. S. Solomon, M. Pelton, and Y. Yamamoto, Phys. Rev. Lett. 86, 3903 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.3903
8.
8.M. Bayer, T. L. Reinecke, F. Weidner, A. Larionov, A. McDonald, and A. Forchel, Phys. Rev. Lett. 86, 3168 (2001).
http://dx.doi.org/10.1103/PhysRevLett.86.3168
9.
9.T. Virgili, D. G. Lidzey, D. D. C. Bradley, and S. Walkerb, Synth. Met. 116, 497 (2001).
http://dx.doi.org/10.1016/S0379-6779(00)00422-7
10.
10.D. Baxter, M. S. Skolnick, A. Armitage, V. N. Astratov, D. M. Whittaker, T. A. Fisher, J. S. Roberts, D. J. Mowbray, and M. A. Kaliteevski, Phys. Rev. B 56, R10032 (1997).
http://dx.doi.org/10.1103/PhysRevB.56.R10032
11.
11.C. Y. Hu, H. Z. Zheng, J. D. Zhang, H. Zhang, F. H. Yang, and Y. P. Zeng, Appl. Phys. Lett. 82, 665 (2003).
http://dx.doi.org/10.1063/1.1542929
12.
12.G. Jungk, Phys. Status Solidi B 199, 605 (1997).
http://dx.doi.org/10.1002/1521-3951(199702)199:2<605::AID-PSSB605>3.0.CO;2-5
13.
13.A. Camposeo, L. Persano, P. Del Carro, T. Virgili, R. Cingolani, and D. Pisignano, Org. Electron. 8, 114 (2007).
http://dx.doi.org/10.1016/j.orgel.2006.06.004
14.
14.M. A. Kaliteevski and A. V. Kavokin, Phys. Solid State 37, 3074 (1995).
15.
15.A. A. Dukin, N. A. Feoktistov, V. G. Golubev, A. V. Medvedev, A. B. Pevtsov, and A. V. Sel’kin, Phys. Rev. E 67, 046602 (2003).
http://dx.doi.org/10.1103/PhysRevE.67.046602
16.
16.L. Persano, E. Mele, R. Cingolani, and D. Pisignano, Appl. Phys. Lett. 87, 031103 (2005).
http://dx.doi.org/10.1063/1.1994956
17.
17.G. Panzarini, L. C. Andreani, A. Armitage, D. Baxter, M. S. Skolnick, V. N. Astratov, J. S. Roberts, A. V. Kavokin, M. R. Vladimirova, and M. A. Kaliteevski, Phys. Rev. B 59, 5082 (1999).
http://dx.doi.org/10.1103/PhysRevB.59.5082
18.
18.A. Armitage, M. S. Skolnick, V. N. Astratov, D. M. Whittaker, G. Panzarini, L. C. Andreani, T. A. Fisher, J. S. Roberts, A. V. Kavokin, M. A. Kaliteevski, and M. R. Vladimirova, Phys. Rev. B 57, 14887 (1998).
http://dx.doi.org/10.1103/PhysRevB.57.14877
19.
19.R. P. Stanley, R. Houndré, U. Oesterle, P. Pellandini, and M. Ilegems, Appl. Phys. Lett. 65, 2093 (1994).
http://dx.doi.org/10.1063/1.112803
20.
20.A. Armitage, M. S. Skolnick, A. V. Kavokin, V. N. Astratov, D. M. Whittaker, G. A. Gehring, and J. S. Roberts, Phys. Rev. B 58, 15367 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.15367
21.
21.M. S. Skolnick, V. N. Astratov, D. M. Whittaker, A. Armitage, M. Emam-Ismael, R. M. Stevenson, J. J. Baumberg, J. S. Roberts, D. G. Lidzey, T. Virgili, and D. D. C. Bradley, J. Lumin. 87–89, 25 (2000).
http://dx.doi.org/10.1016/S0022-2313(99)00209-4
22.
22.M. Bayindir, C. Kural, E. Ozbay, and J. Opt, Pure Appl. Opt. 3, S184 (2001).
http://dx.doi.org/10.1088/1464-4258/3/6/369
23.
23.L. Pavesi, G. Panzarini, and L. C. Andreani, Phys. Rev. B 58, 15794 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.15794
24.
24.P. Pelladini, R. P. Stanley, R. Houdre, U. Oesterle, M. Ilegems, and C. Weisbuch, Appl. Phys. Lett. 71, 864 (1997).
http://dx.doi.org/10.1063/1.119671
25.
25.C. Diederichs, J. Tignon, G. Dasbach, C. Ciuti, A. Lemaitre, J. Bloch, Ph. Roussignol, and C. Delalande, Nature (London) 440, 904 (2006).
http://dx.doi.org/10.1038/nature04602
26.
26.C. Diederichs and J. Tignon, Appl. Phys. Lett. 87, 251107 (2005).
http://dx.doi.org/10.1063/1.2150282
27.
27.D. G. Gusev, M. G. Martemyanov, I. V. Soboleva, T. V. Dolgova, A. A. Fedyanin, and O. A. Aktsipetrov, JETP Lett. 80, 633 (2004).
28.
28.D. Gerace, H. E. Türeci, A. Imamoglu, V. Giovannetti, and R. Fazio, Nat. Phys. 5, 281 (2009).
http://dx.doi.org/10.1038/nphys1223
29.
29.S. V. Rao, N. K. M. Naga Srinivas, D. N. Rao, L. Giribabu, B. G. Maiya, R. Philip, and G. R. Kumar, Opt. Commun. 182, 255 (2000).
http://dx.doi.org/10.1016/S0030-4018(00)00808-7
30.
30.M. O. Senge, M. Fazekas, E. G. A. Notaras, W. J. Blau, M. Zawadzka, O. B. Locos, and E. M. Ni Mhuircheartaigh, Adv. Mater. 19, 2737 (2007).
http://dx.doi.org/10.1002/adma.200601850
31.
31.R. J. Holmes and S. R. Forrest, Phys. Rev. B 71, 235203 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.235203
32.
32.D. G. Lidzey, D. D. C. Bradley, T. Virgili, A. Armitage, M. S. Skolnick, and S. Walker, Phys. Rev. Lett. 82, 3316 (1999).
http://dx.doi.org/10.1103/PhysRevLett.82.3316
33.
33.S. Stelitano, G. De Luca, S. Savasta, and S. Patané, Appl. Phys. Lett. 93, 193302 (2008).
http://dx.doi.org/10.1063/1.3026534
34.
34.A. Arena, S. Patanè, G. Saitta, S. Savasta, R. Girlanda, and R. Rinaldi, Appl. Phys. Lett. 72, 2571 (1998).
http://dx.doi.org/10.1063/1.121421
35.
35.S. Stelitano, S. Savasta, S. Patané, G. De Luca, and L. Monsù Scolaro, J. Appl. Phys. 106, 033102 (2009).
http://dx.doi.org/10.1063/1.3190517
http://aip.metastore.ingenta.com/content/aip/journal/apl/95/9/10.1063/1.3216838
Loading
/content/aip/journal/apl/95/9/10.1063/1.3216838
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/95/9/10.1063/1.3216838
2009-09-02
2014-11-28

Abstract

A light emitting structure consisting of two coupled microcavities has been realized and studied. One of the two cavities contains a luminescent organic thin film of tetrakis(4-methoxyphenyl)porphyrin, whereas the other microcavity is a dielectric structure coupled to the organic one by means of a LiF/ZnS Bragg mirror. Reflectivityspectra show the presence of two well defined cavity dips. We observe an energy splitting of the two cavity modes. Despite the fact that only one cavity contains the active layer, the photoluminescencespectra display two peaks with comparable intensities at the same energy of the reflectivity dips. These observations indicate the strong coupling of the two cavities. The comparison of the diagonalized effective Hamiltonian with the observed resonances further confirms the strong coupling.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/95/9/1.3216838.html;jsessionid=aj5sdg4958sg0.x-aip-live-06?itemId=/content/aip/journal/apl/95/9/10.1063/1.3216838&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Vertical coupled double organic microcavities
http://aip.metastore.ingenta.com/content/aip/journal/apl/95/9/10.1063/1.3216838
10.1063/1.3216838
SEARCH_EXPAND_ITEM