1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Photoimpedance characterization of polymer field-effect transistor
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/95/9/10.1063/1.3222978
1.
1.G. Horowitz, Adv. Mater. (Weinheim, Ger.) 10, 365 (1998).
http://dx.doi.org/10.1002/(SICI)1521-4095(199803)10:5<365::AID-ADMA365>3.0.CO;2-U
2.
2.C. D. Dimitrakopoulos and P. R. L. Malenfant, Adv. Mater. (Weinheim, Ger.) 14, 99 (2002).
http://dx.doi.org/10.1002/1521-4095(20020116)14:2<99::AID-ADMA99>3.0.CO;2-9
3.
3.H. Sirringhaus, Adv. Mater. (Weinheim, Ger.) 17, 2411 (2005).
http://dx.doi.org/10.1002/adma.200501152
4.
4.T. B. Singh, N. S. Sariciftci, M. Jaiswal, and R. Menon, in Handbook of Organic Electronics and Photonics, edited by H. S. Nalwa (American Scientific, Valencia, California, 2008), Vol. 3, pp. 153176.
5.
5.K. S. Narayan and N. Kumar, Appl. Phys. Lett. 79, 1891 (2001).
http://dx.doi.org/10.1063/1.1404131
6.
6.Y. -Y. Noh, D. -Y. Kim, Y. Yoshida, K. Yase, B. -J. Jung, E. Lim, and H. -K. Shim, Appl. Phys. Lett. 86, 043501 (2005).
http://dx.doi.org/10.1063/1.1856144
7.
7.K. Seshadri and C. D. Frisbie, Appl. Phys. Lett. 78, 993 (2001).
http://dx.doi.org/10.1063/1.1345805
8.
8.M. Jaiswal and R. Menon, Appl. Phys. Lett. 88, 123504 (2006).
http://dx.doi.org/10.1063/1.2186989
9.
9.M. Debucquoy, S. Verlaak, S. Steudel, K. Myny, J. Genoe, and P. Heremans, Appl. Phys. Lett. 91, 103508 (2007).
http://dx.doi.org/10.1063/1.2777177
10.
10.M. Debucquoy, S. Verlaak, S. Steudel, S. De Vusser, J. Genoe, and P. Heremans, Proc. SPIE 6192, 61921F (2006).
http://dx.doi.org/10.1117/12.667246
11.
11.J. D. Yuen, A. S. Dhoot, E. B. Namdas, N. E. Coates, M. Heeney, I. McCulloch, D. Moses, and A. J. Heeger, J. Am. Chem. Soc. 129, 14367 (2007).
http://dx.doi.org/10.1021/ja0749845
12.
12.S. M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981).
13.
13.Y. -Y. Noh, J. Ghim, S. -J. Kang, K. -J. Baeg, D. -Y. Kim, and K. Yase, J. Appl. Phys. 100, 094501 (2006).
http://dx.doi.org/10.1063/1.2364449
14.
14.Y. Takanashi, K. Takahata, and Y. Muramoto, IEEE Trans. Electron Devices 46, 2271 (1999).
http://dx.doi.org/10.1109/16.808049
15.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/95/9/10.1063/1.3222978
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) Schematic diagram of the FET under illumination and the molecular structure of PBTTT used in this study. (b) Transfer characteristics of PBTTT FET. The channel length is and width is 1 mm. [Inset: transfer characteristics under monochromatic illumination at various intensities.]

Image of FIG. 2.

Click to view

FIG. 2.

Photocurrent as a function of incident light intensity under turn-on (filled squares) and turn-off states (filled circles). Solid lines are fits to Eqs. (1) and (2).

Image of FIG. 3.

Click to view

FIG. 3.

(a) Phase vs frequency, the corner frequency is the frequency value at −45°. [Inset: Bode plot of output impedance for PBTTT FET at various light intensities.] (b) Output impedance vs at different light intensities. Solid lines are the simulated curve derived from the equivalent circuit parameters. [Inset: the equivalent circuit.]

Tables

Generic image for table

Click to view

Table I.

The equivalent circuit parameters for PBTTT FET. ( is the small-signal differential charge accumulated at the interface in the dark.)

Loading

Article metrics loading...

/content/aip/journal/apl/95/9/10.1063/1.3222978
2009-09-04
2014-04-19

Abstract

The small signal ac response is measured across the source-drain terminals of poly(2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene) field-effect transistor under dc bias to obtain the equivalent circuit parameters in the dark, and under a monochromatic light (540 nm) of various intensities. The numerically simulated response based on these parameters shows deviation at low frequency which is related to the charge accumulation at the interface and the contact resistance at the electrodes. This method can be used to differentiate the photophysical phenomena occurring in the bulk from that at the metal-semiconductor interface for polymerfield-effect transistors.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/95/9/1.3222978.html;jsessionid=fllfr6m2gfitm.x-aip-live-06?itemId=/content/aip/journal/apl/95/9/10.1063/1.3222978&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Photoimpedance characterization of polymer field-effect transistor
http://aip.metastore.ingenta.com/content/aip/journal/apl/95/9/10.1063/1.3222978
10.1063/1.3222978
SEARCH_EXPAND_ITEM