1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
High-mobility bio-organic field effect transistors with photoreactive DNAs as gate insulators
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/96/10/10.1063/1.3299022
1.
1.C. Nogues, S. R. Cohen, S. Daube, N. Apter, and R. Naaman, J. Phys. Chem. B 110, 8910 (2006).
http://dx.doi.org/10.1021/jp060870o
2.
2.Q. Sun, G. Subramanyam, L. Dai, M. Check, A. Campbell, R. Naik, J. Grote, and Y. Wang, ACS Nano 3, 737 (2009).
http://dx.doi.org/10.1021/nn8009079
3.
3.Q. Sun, D. W. Chang, L. Dai, J. Grote, and R. Naik, Appl. Phys. Lett. 92, 251108 (2008).
http://dx.doi.org/10.1063/1.2948864
4.
4.J. A. Hagen, W. Li, A. J. Steckl, and J. G. Grote, Appl. Phys. Lett. 88, 171109 (2006).
http://dx.doi.org/10.1063/1.2197973
5.
5.A. J. Steckl, Nat. Photonics 1, 3 (2007).
http://dx.doi.org/10.1038/nphoton.2006.56
6.
6.C. H. Lee, Y. -W. Kwon, E. -D. Do, D. -H. Choi, and J. -I. Jin, Phys. Rev. B 73, 224417 (2006).
http://dx.doi.org/10.1103/PhysRevB.73.224417
7.
7.E. M. Heckman, J. G. Grote, F. K. Hopkins, and P. P. Yaney, Appl. Phys. Lett. 89, 181116 (2006).
http://dx.doi.org/10.1063/1.2378400
8.
8.J. G. Grote, D. E. Diggs, R. L. Nelson, J. S. Zetts, F. K. Hopkins, N. Ogata, J. A. Hagen, E. Heckman, P. P. Yaney, M. O. Stone, and L. R. Dalton, Mol. Cryst. Liq. Cryst. 426, 3 (2005).
http://dx.doi.org/10.1080/15421400590890615
9.
9.B. Singh, N. S. Sariciftci, J. G. Grote, and F. K. Hopkins, J. Appl. Phys. 100, 024514 (2006).
http://dx.doi.org/10.1063/1.2220488
10.
10.P. Stadler, K. Oppelt, T. B. Singh, J. G. Grote, R. Schwödiauer, S. Bauer, H. Pigmayer-Brezina, D. Bäuerle, and N. S. Sariciftci, Org. Electron. 8, 648 (2007).
http://dx.doi.org/10.1016/j.orgel.2007.05.003
11.
11.D. H. Choi, S. J. Oh, H. B. Cha, and J. Y. Lee, Eur. Polym. J. 37, 1951 (2001).
http://dx.doi.org/10.1016/S0014-3057(01)00102-1
12.
12.B. H. Lee, J. H. Kim, M. J. Cho, S. H. Lee, and D. H. Choi, Dyes Pigm. 61, 235 (2004).
http://dx.doi.org/10.1016/j.dyepig.2003.10.013
13.
13.K. H. Jung, S. Y. Bae, K. H. Kim, M. J. Cho, K. Lee, Z. H. Kim, D. H. Choi, D. H. Lee, D. S. Chung, and C. E. Park, Chem. Commun. (Cambridge) 2009, 5290 (2009).
http://dx.doi.org/10.1039/b911780f
14.
14.M. -H. Yoon, H. Yan, A. Facchetti, and T. J. Marks, J. Am. Chem. Soc. 127, 10388 (2005).
http://dx.doi.org/10.1021/ja052488f
15.
15.M. E. Roberts, N. Queraltó, S. C. B. Mannsfeld, B. N. Reinecke, W. Knoll, and Z. Bao, Chem. Mater. 21, 2292 (2009).
http://dx.doi.org/10.1021/cm900637p
16.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/96/10/10.1063/1.3299022
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

OTFT device configuration. The structures of HB-ant-THT, CcDNA, and CTMADNA-co-CcDNA. plots for MIM devices fabricated with CcDNA and CTMADNA-co-CcDNA.

Image of FIG. 2.

Click to view

FIG. 2.

UV-Vis absorption spectra of photocrosslinked CcDNA film (a), HB-ant-THT film (b), and double layer of CcDNA and HB-ant-THT (c). Inset: absorption spectral change of CcDNA film with the UV exposure time and its photopattern. Sample: solution (dotted line), Solid lines (film samples).

Image of FIG. 3.

Click to view

FIG. 3.

Transfer characteristics of field effect transistor devices. (a) OTFT device with CcDNA, (b) OTFT device with CTMADNA-co-CcDNA.

Image of FIG. 4.

Click to view

FIG. 4.

Hysteresis behaviors in the transfer curves. (a) OTFT device with CcDNA, (b) OTFT device with CTMADNA-co-CcDNA.

Loading

Article metrics loading...

/content/aip/journal/apl/96/10/10.1063/1.3299022
2010-03-11
2014-04-19

Abstract

Organic-soluble DNAs bearing chalcone moieties were synthesized by using purified natural sodium DNA. In addition to the chalcone-containing DNA homopolymer (CcDNA), a copolymer (CTMADNA-co-CcDNA) was synthesized. They were employed as gate insulators for fabricating organic thin-film transistors. An organic semiconductor (-(9,10-bis((4-hexylphenyl)ethynyl)anthracene-2,6-yl-diyl)bis(ethyne-2,1-diyl)bis(2-hexylthiophene; HB-ant-THT) was deposited on the photocrosslinked DNA-based gate insulators via a solution process. Interestingly, the resulting TFTdevices had extremely high field-effect mobilities, and their corresponding transfer curves indicated low hysteresis. The carrier mobility of the device with HB-ant-THT deposited on the CTMADNA-co-CcDNA gate insulator was the best, i.e., .

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/96/10/1.3299022.html;jsessionid=axj394htd1q4.x-aip-live-02?itemId=/content/aip/journal/apl/96/10/10.1063/1.3299022&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: High-mobility bio-organic field effect transistors with photoreactive DNAs as gate insulators
http://aip.metastore.ingenta.com/content/aip/journal/apl/96/10/10.1063/1.3299022
10.1063/1.3299022
SEARCH_EXPAND_ITEM