1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Light- and ion-gauge-induced space charges in tris-(8-hydroxyquinolate) aluminum-based organic light-emitting diodes
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/96/14/10.1063/1.3374405
1.
1.G. G. Malliaras and J. C. Scott, J. Appl. Phys. 83, 5399 (1998).
http://dx.doi.org/10.1063/1.367369
2.
2.B. Ruhstaller, S. A. Carter, S. Barth, H. Riel, W. Riess, and J. C. Scott, J. Appl. Phys. 89, 4575 (2001).
http://dx.doi.org/10.1063/1.1352027
3.
3.W. Brütting, S. Berleb, and A. G. Mückl, Org. Electron. 2, 1 (2001).
http://dx.doi.org/10.1016/S1566-1199(01)00009-X
4.
4.H. Wang, K. P. Klubek, and C. W. Tang, Appl. Phys. Lett. 93, 093306 (2008).
http://dx.doi.org/10.1063/1.2978349
5.
5.H. Aziz, Z. D. Popovic, N. -X. Hu, A. -M. Hor, and G. Xu, Science 283, 1900 (1999).
http://dx.doi.org/10.1126/science.283.5409.1900
6.
6.R. H. Young, C. W. Tang, and A. P. Marchetti, Appl. Phys. Lett. 80, 874 (2002).
http://dx.doi.org/10.1063/1.1445271
7.
7.T. Haskins, A. Chowdhury, R. H. Young, J. R. Lenhard, A. P. Marchetti, and L. J. Rothberg, Chem. Mater. 16, 4675 (2004).
http://dx.doi.org/10.1021/cm049538k
8.
8.M. Matsumura, Y. Jinde, T. Akai, and T. Kimura, Jpn. J. Appl. Phys., Part 1 35, 5735 (1996).
http://dx.doi.org/10.1143/JJAP.35.5735
9.
9.W. Brütting, H. Riel, T. Beierlein, and W. Rieß, J. Appl. Phys. 89, 1704 (2001).
http://dx.doi.org/10.1063/1.1332088
10.
10.D. Y. Kondakov, J. R. Sandifer, C. W. Tang, and R. H. Young, J. Appl. Phys. 93, 1108 (2003).
http://dx.doi.org/10.1063/1.1531231
11.
11.V. V. Jarikov and D. Y. Kondakov, J. Appl. Phys. 105, 034905 (2009).
http://dx.doi.org/10.1063/1.3072622
12.
12.Y. Noguchi, N. Sato, Y. Tanaka, Y. Nakayama, and H. Ishii, Appl. Phys. Lett. 92, 203306 (2008).
http://dx.doi.org/10.1063/1.2936084
13.
13.E. Ito, N. Hayashi, H. Ishii, N. Matsuie, K. Tsuboi, Y. Ouchi, Y. Harima, K. Yamashita, and K. Seki, J. Appl. Phys. 92, 7306 (2002).
http://dx.doi.org/10.1063/1.1518759
14.
14.We employed a nude ion-gauge (Canon Anelva Tech., NIG-2F) and a controller (YSL, VX-200B) to evaluate the process pressure.
15.
15.A. J. Twarowski and A. C. Albrecht, J. Chem. Phys. 70, 2255 (1979).
http://dx.doi.org/10.1063/1.437729
16.
16.S. Egusa, A. Miura, N. Gemma, and M. Azuma, Jpn. J. Appl. Phys., Part 1 33, 2741 (1994).
http://dx.doi.org/10.1143/JJAP.33.2741
17.
17.S. Ogawa, Y. Kimura, H. Ishii, and M. Niwano, Jpn. J. Appl. Phys., Part 2 42, L1275 (2003).
http://dx.doi.org/10.1143/JJAP.42.L1275
18.
18.N. Sato, Y. Noguchi, Y. Tanaka, Y. Nakayama, and H. Ishii, Proc. SPIE 7051, 70511S (2008).
http://dx.doi.org/10.1117/12.795790
19.
19.We assumed the dielectric constant of to be 3.0.
20.
20.K. Sugi, H. Ishii, Y. Kimura, M. Niwano, E. Ito, Y. Washizu, N. Hayashi, Y. Ouchi, and K. Seki, Thin Solid Films 464-465, 412 (2004).
http://dx.doi.org/10.1016/j.tsf.2004.06.035
21.
21.K. Ozasa, S. Nemoto, T. Isoshima, E. Ito, M. Maeda, and M. Hara, Appl. Phys. Lett. 93, 263304 (2008).
http://dx.doi.org/10.1063/1.3058439
22.
22.R. Priestley, I. Sokolik, A. D. Walser, C. W. Tang, and R. Dorsinville, Synth. Met. 84, 915 (1997).
http://dx.doi.org/10.1016/S0379-6779(96)04210-5
23.
23.K. Thangaraju, P. Amaladass, K. S. Bharathi, A. K. Mohanakrishnan, V. Narayanan, and J. Kumar, Appl. Surf. Sci. 255, 5760 (2009).
http://dx.doi.org/10.1016/j.apsusc.2008.12.079
24.
24.T. Ikeda, H. Murata, Y. Kinoshita, J. Shike, Y. Ikeda, and M. Kitano, Chem. Phys. Lett. 426, 111 (2006).
http://dx.doi.org/10.1016/j.cplett.2006.06.002
25.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/96/14/10.1063/1.3374405
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Typical DCM curves of devices fabricated under (a) dark conditions and (b)–(f) light irradiation. and for each device are shown in the figure. , , and are indicated by short bars. The halftone area shown in (a)–(c) corresponds to the amount of accumulated charge at the interface and in the bulk of the layer . The DCM curves in (d)–(f) were obtained by applying the first (gray) and second (black) bias sweeps. All curves were measured at a sweep rate of 1 V/s. The sweep direction is indicated by arrows in (a).

Image of FIG. 2.

Click to view

FIG. 2.

(a) The accumulated charge density derived by integrating the DCM curve from to (, open symbols), and from to (, closed symbols) as a function of the incident light intensity. The solid line shows of the device fabricated under dark conditions. The broken line is a guide to the eye. (b) The plot of the devices fabricated under 400 nm light irradiation at , 1.0, and . The linear lines are a guide to the eye.

Image of FIG. 3.

Click to view

FIG. 3.

(a) Schematic energy diagrams of the light-treated device. The holes surrounded by the broken lines indicate that they are compensated by the interface charge or the negative space charge. (b) Schematic illustration of the negative space charge due to the spatial inhomogeneity of . (c) Schematic illustration of the negative space charge due to trapped electrons. is the unit vector of the surface normal direction.

Image of FIG. 4.

Click to view

FIG. 4.

Typical DCM curves of devices fabricated with IG operation during the deposition of (a) and (b) (the solid lines). The DCM curve of the device fabricated under dark conditions is plotted as a reference (broken lines). , , and are indicated by short bars.

Loading

Article metrics loading...

/content/aip/journal/apl/96/14/10.1063/1.3374405
2010-04-07
2014-04-24

Abstract

We report space charge formation in tris-(8-hydroxyquinolate) aluminum -based organic light-emitting diodes induced by light irradiation and ion-gauge (IG) operation during device fabrication. An analysis of the capacitance-voltage curves of the light-treated devices reveals the presence of uniformly distributed negative space charges in the layer. Spatial inhomogeneity of the orientation polarization as well as electrons trapped in the film can be the origin of the negative space charge. We also found that positively charged species can be included in the device due to IG operation.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/96/14/1.3374405.html;jsessionid=1kbjb8st5vedp.x-aip-live-01?itemId=/content/aip/journal/apl/96/14/10.1063/1.3374405&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Light- and ion-gauge-induced space charges in tris-(8-hydroxyquinolate) aluminum-based organic light-emitting diodes
http://aip.metastore.ingenta.com/content/aip/journal/apl/96/14/10.1063/1.3374405
10.1063/1.3374405
SEARCH_EXPAND_ITEM