1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Reversible tuning of photonic crystal cavities using photochromic thin films
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/96/15/10.1063/1.3377910
1.
1.J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University Press, Princeton, NJ, 2008).
2.
2.B. Song, S. Noda, T. Asano, and Y. Akahane, Nature Mater. 4, 207 (2005).
http://dx.doi.org/10.1038/nmat1320
3.
3.K. Srinivasan, P. E. Barclay, O. Painter, J. Chen, A. Y. Cho, and C. Gmachl, Appl. Phys. Lett. 83, 1915 (2003).
http://dx.doi.org/10.1063/1.1606866
4.
4.T. Yoshie, A. Scherer, J. Hendrickson, G. Khitrova, H. M. Gibbs, G. Rupper, C. Ell, O. B. Shchekin, and D. G. Deppe, Nature (London) 432, 200 (2004).
http://dx.doi.org/10.1038/nature03119
5.
5.S. McNab, N. Moll, and Y. Vlasov, Opt. Express 11, 2927 (2003).
http://dx.doi.org/10.1364/OE.11.002927
6.
6.W. Bogaerts, D. Taillaert, B. Luyssaert, P. Dumon, J. V. Campenhout, P. Bienstman, D. V. Thourhout, R. Baets, V. Wiaux, and S. Beckx, Opt. Express 12, 1583 (2004).
http://dx.doi.org/10.1364/OPEX.12.001583
7.
7.S. Fan, P. Villeneuve, J. Joannopoulos, and H. Haus, Opt. Express 3, 4 (1998).
http://dx.doi.org/10.1364/OE.3.000004
8.
8.M. Notomi, A. Shinya, S. Mitsugi, G. Kira, E. Kuramochi, and T. Tanabe, Opt. Express 13, 2678 (2005).
http://dx.doi.org/10.1364/OPEX.13.002678
9.
9.T. Tanabe, M. Notomi, S. Mitsugi, A. Shinya, and E. Kuramochi, Opt. Lett. 30, 2575 (2005).
http://dx.doi.org/10.1364/OL.30.002575
10.
10.N. Hitoshi, Y. Sugimoto, K. Kanamoto, N. Ikeda, Y. Tanaka, Y. Nakamura, S. Ohkouchi, Y. Watanabe, K. Inoue, H. Ishikawa, and K. Asakawa, Opt. Express 12, 6606 (2004).
http://dx.doi.org/10.1364/OPEX.12.006606
11.
11.H. Mabuchi, M. Armen, B. Lev, M. Loncar, J. Vuckovic, H. J. Kimble, J. Preskill, M. Roukes, A. Scherer, and S. J. van Enk, Quantum Information & Computation 1, 7 (2001).
12.
12.J. P. Reithmaier, G. Sek, A. Loffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. V. Keldysh, V. D. Kulakovskii, T. L. Reinecke, and A. Forchel, Nature (London) 432, 197 (2004).
http://dx.doi.org/10.1038/nature02969
13.
13.S. Mosor, J. Hendrickson, B. C. Richards, J. Sweet, G. Khitrova, H. M. Gibbs, T. Yoshie, A. Scherer, O. B. Shchekin, and D. G. Deppe, Appl. Phys. Lett. 87, 141105 (2005).
http://dx.doi.org/10.1063/1.2076435
14.
14.K. Srinivasan and O. Painter, Appl. Phys. Lett. 90, 031114 (2007).
http://dx.doi.org/10.1063/1.2431719
15.
15.A. Faraon, D. Englund, I. Fushman, J. Vučković, N. Stoltz, and P. Petroff, Appl. Phys. Lett. 90, 213110 (2007).
http://dx.doi.org/10.1063/1.2742789
16.
16.D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vuckovic, Nature (London) 450, 857 (2007).
http://dx.doi.org/10.1038/nature06234
17.
17.S. Song, S. S. Howard, Z. Liu, A. O. Dirisu, C. F. Gmachi, and C. B. Arnold, Appl. Phys. Lett. 89, 041115 (2006).
http://dx.doi.org/10.1063/1.2236296
18.
18.A. Faraon, D. Englund, D. Bulla, B. Luther-Davies, B. J. Eggleton, N. Stoltz, P. Petroff, and J. Vučković, Appl. Phys. Lett. 92, 043123 (2008).
http://dx.doi.org/10.1063/1.2839308
19.
19.G. Berkovic, V. Krongauz, and V. Weiss, Chem. Rev. (Washington, D.C.) 100, 1741 (2000).
http://dx.doi.org/10.1021/cr9800715
20.
20.T. Yoshida and A. Morinaka, J. Photochem. Photobiol., A 78, 179 (1994).
http://dx.doi.org/10.1016/1010-6030(93)03719-W
21.
21.Y. Akahane, T. Asano, B. S. Song, and S. Noda, Nature (London) 425, 944 (2003).
http://dx.doi.org/10.1038/nature02063
22.
22.A. K. Chibisov and H. Görner, Chem. Phys. 237, 425 (1998).
http://dx.doi.org/10.1016/S0301-0104(98)00291-2
23.
23.A. K. Chibisov and H. Gorner, J. Phys. Chem. A 101, 4305 (1997).
http://dx.doi.org/10.1021/jp962569l
24.
24.I. Fushman, D. Englund, and J. Vuckovic, Appl. Phys. Lett. 87, 241102 (2005).
http://dx.doi.org/10.1063/1.2138792
http://aip.metastore.ingenta.com/content/aip/journal/apl/96/15/10.1063/1.3377910
Loading
/content/aip/journal/apl/96/15/10.1063/1.3377910
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/96/15/10.1063/1.3377910
2010-04-14
2014-11-28

Abstract

We demonstrate reversible tuning of a photonic crystal cavity resonance using a thin photochromicfilm composed of spiropyran and polymethylmethacrylate that serves as a photosensitive cladding layer. Exposure of spiropyran to ultraviolet light results in smooth redshift of the cavity resonance that can be reversed by exposure to visible wavelength light. We achieve a reversible resonance shift of up to 2.7 nm, which can be performed locally on individual cavities. The resonance shift over multiple successive UV and visible light exposures is studied to determine the repeatability of the photochromicfilm.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/96/15/1.3377910.html;jsessionid=1s51r7hclmlp4.x-aip-live-03?itemId=/content/aip/journal/apl/96/15/10.1063/1.3377910&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Reversible tuning of photonic crystal cavities using photochromic thin films
http://aip.metastore.ingenta.com/content/aip/journal/apl/96/15/10.1063/1.3377910
10.1063/1.3377910
SEARCH_EXPAND_ITEM