1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Dual carrier traps related hysteresis in organic inverters with polyimide-modified gate-dielectrics
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/96/15/10.1063/1.3395389
1.
1.C. J. Drury, C. M. J. Mutsaers, C. M. Hart, M. Matters, and D. M. de Leeuw, Appl. Phys. Lett. 73, 108 (1998).
http://dx.doi.org/10.1063/1.121783
2.
2.B. Crone, A. Dodabalapur, Y. Y. Lin, R. W. Filas, Z. Bao, A. LaDuca, R. Sarpeshkar, H. E. Katz, and W. Li, Nature (London) 403, 521 (2000).
http://dx.doi.org/10.1038/35000530
3.
3.S. I. Na, S. S. Kim, J. Jo, and D. Y. Kim, Adv. Mater. (Weinheim, Ger.) 20, 4061 (2008).
http://dx.doi.org/10.1002/adma.200800338
4.
4.W. Y. Chou, C. W. Kuo, H. L. Cheng, Y. R. Chen, F. C. Tang, F. Y. Yang, D. Y. Shu, and C. C. Liao, Appl. Phys. Lett. 89, 112126 (2006).
http://dx.doi.org/10.1063/1.2354426
5.
5.D. J. Gundlach, K. P. Pernstich, G. Wilckens, M. Grüter, S. Haas, and B. Batlogg, J. Appl. Phys. 98, 064502 (2005).
http://dx.doi.org/10.1063/1.2043256
6.
6.N. Benson, M. Schidleja, C. Melzer, R. Schmechel, and H. V. Sdggern, Appl. Phys. Lett. 89, 182105 (2006).
http://dx.doi.org/10.1063/1.2372702
7.
7.H. Klauk, U. Zschieschang, J. Pflaum, and M. Halik, Nature Mater. 445, 745 (2007).
http://dx.doi.org/10.1038/nature05533
8.
8.S. C. Lim, S. H. Kim, G. H. Kim, J. B. Koo, Y. S. Yang, J. H. Lee, C. H. Ku, and Y. H. Song, Thin Solid Films 516, 4330 (2008).
http://dx.doi.org/10.1016/j.tsf.2007.12.134
9.
9.M. P. Walser, M. L. Kalb, T. Mathis, T. J. Brenner, and B. Batlogg, Appl. Phys. Lett. 94, 053303 (2009).
http://dx.doi.org/10.1063/1.3077192
10.
10.X. H. Zhang, W. J. Poscavage, J. S. Choi, and B. Kippelen, Appl. Phys. Lett. 94, 043312 (2009).
http://dx.doi.org/10.1063/1.3077025
11.
11.T. N. Ng, S. Sanbanda, R. Lujan, A. C. Arias, C. R. Newman, H. Yan, and A. Facchetti, Appl. Phys. Lett. 94, 233307 (2009).
http://dx.doi.org/10.1063/1.3153510
12.
12.G. Gu, M. G. Kane, J. E. Doty, and A. H. Firester, Appl. Phys. Lett. 87, 243512 (2005).
http://dx.doi.org/10.1063/1.2146059
13.
13.S. J. Kim, M. S. So, M. C. Suh, and H. K. Chung, Jpn. J. Appl. Phys., Part 2 44, L1414 (2005).
http://dx.doi.org/10.1143/JJAP.44.L1414
14.
14.M. Kitamura and Y. Arakawa, Appl. Phys. Lett.91, 053505 (2007).
http://dx.doi.org/10.1063/1.2759981
15.
15.W. Y. Chou, B. L. Yeh, H. L. Cheng, B. Y. Sun, Y. C. Cheng, Y. S. Lin, S. J. Liu, F. C. Tang, and C. -C. Chang, Org. Electron. 10, 1001 (2009).
http://dx.doi.org/10.1016/j.orgel.2009.03.017
16.
16.See supplementary material at http://dx.doi.org/10.1063/1.3395389 for thin-film morphology and capacitance-voltage measurements.[Supplementary Material]
17.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/96/15/10.1063/1.3395389
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

An organic inverter integrated with pentacene- and -based transistors. Hysteresis loop of capacitance-voltage characteristics for (a) MOS1 and MOS2 systems and (b) MOS3 and MOS4 systems swept for 10 kHz. Symbols: closed symbol is swept from −25 to 25 V (forward process), open symbol is swept from 25 to −25 V (reverse process), and (◼) with and (●) without the PI layers.

Image of FIG. 2.

Click to view

FIG. 2.

The transfer curves , , and at the drain bias of −40 V for [(a) and (c)] -channel OTFT and 40 V for [(b) and (d)] -channel OTFT. Symbols: (◼) with and (○) without PI.

Image of FIG. 3.

Click to view

FIG. 3.

Hysteresis transfer curves of O-CMOS inverters in which closed and open symbols represent the forward and reverse processes, respectively. (a) with the PI layer and (b) without the PI layer. Output current and gain of the O-CMOS inverters, (c) with the PI layer, and (d) without the PI layer.

Loading

Article metrics loading...

/content/aip/journal/apl/96/15/10.1063/1.3395389
2010-04-13
2014-04-24

Abstract

We integrated pentacene- and -diheptyl-3,4,9,10-perylenebiscarboximide-based transistors into an organic complementary metal oxide semiconductor (O-CMOS) whose gate-dielectric surface was modified by polyimide (PI). The hysteresis behaviors in metal-oxide-semiconductors,field-effect transistors, and O-CMOS were reported clearly. Measurements of hysteresis showed that the PI exhibited high trapping and detrapping speeds for charge carriers, including holes and electrons, to result in high performance transistors and O-CMOSs; moreover, the trapping and detrapping speeds were matched. Finally, a PI-modified organic inverter with little hysteresis, low static power dissipation, high noise margins, and switching voltage near was achieved simultaneously.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/96/15/1.3395389.html;jsessionid=10bh16af365to.x-aip-live-01?itemId=/content/aip/journal/apl/96/15/10.1063/1.3395389&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Dual carrier traps related hysteresis in organic inverters with polyimide-modified gate-dielectrics
http://aip.metastore.ingenta.com/content/aip/journal/apl/96/15/10.1063/1.3395389
10.1063/1.3395389
SEARCH_EXPAND_ITEM