1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Embedded indium-tin-oxide nanoelectrodes for efficiency and lifetime enhancement of polymer-based solar cells
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/96/15/10.1063/1.3395395
1.
1.M. A. Green, Third Generation Photovoltaics: Advanced Solar Electricity Generation (Springer, Berlin, 2003).
2.
2.J. J. M. Halls, C. A. Walsh, N. C. Greenham, E. A. Marseglia, R. H. Friend, S. C. Moratti, and A. B. Holmes, Nature (London) 376, 498 (1995).
http://dx.doi.org/10.1038/376498a0
3.
3.W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, Adv. Funct. Mater. 15, 1617 (2005).
http://dx.doi.org/10.1002/adfm.200500211
4.
4.M. Reyes-Reyes, K. Kim, J. Dewald, R. López-sandoval, A. Avadhanula, S. Curran, and D. L. Carroll, Org. Lett. 7, 5749 (2005).
http://dx.doi.org/10.1021/ol051950y
5.
5.J. Y. Kim, S. H. Kim, H. H. Lee, K. Lee, W. Ma, X. Gong, and A. J. Heeger, Adv. Mater. 18, 572 (2006).
http://dx.doi.org/10.1002/adma.200501825
6.
6.K. M. Coakley and M. D. McGehee, Chem. Mater. 16, 4533 (2004).
http://dx.doi.org/10.1021/cm049654n
7.
7.M. C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, and C. J. Brabec, Adv. Mater. 18, 789 (2006).
http://dx.doi.org/10.1002/adma.200501717
8.
8.W. Shockley and H. J. Queisser, J. Appl. Phys. 32, 510 (1961).
http://dx.doi.org/10.1063/1.1736034
9.
9.M. Aryal, F. Buyukserin, K. Mielczarek, X. M. Zhao, J. Gao, A. Zakhidov, and W. Hu, J. Vac. Sci. Technol. B 26, 2562 (2008).
http://dx.doi.org/10.1116/1.2981076
10.
10.C. Goh, K. M. Coakley, and M. D. McGehee, Nano Lett. 5, 1545 (2005).
http://dx.doi.org/10.1021/nl050704c
11.
11.H. S. Wang, L. H. Lin, S. Y. Chen, Y. L. Wang, and K. H. Wei, Nanotechnology 20, 075201 (2009).
http://dx.doi.org/10.1088/0957-4484/20/7/075201
12.
12.A. C. Mayer, S. R. Scully, B. E. Hardin, M. W. Rowell, and M. D. McGehee, Mater. Today 10, 28 (2007).
http://dx.doi.org/10.1016/S1369-7021(07)70276-6
13.
13.T. W. Zeng, Y. Y. Lin, H. H. Lo, C. W. Chen, C. H. Chen, S. C. Liou, H. Y. Huang, and W. F. Su, Nanotechnology 17, 5387 (2006).
http://dx.doi.org/10.1088/0957-4484/17/21/017
14.
14.M. Niggemann, M. Glatthaar, A. Gombert, A. Hinsch, and V. Wittwer, Thin Solid Films 451-452, 619 (2004).
http://dx.doi.org/10.1016/j.tsf.2003.11.028
15.
15.P. Yu, C. H. Chang, C. H. Chiu, C. S. Yang, J. C. Yu, H. C. Kuo, S. H. Hsu, and Y. C. Chang, Adv. Mater. 21, 1618 (2009).
http://dx.doi.org/10.1002/adma.200802563
16.
16.C. H. Chang, P. Yu, and C. S. Yang, Appl. Phys. Lett. 94, 051114 (2009).
http://dx.doi.org/10.1063/1.3079329
17.
17.M. M. Hawkeye and M. J. Brett, J. Vac. Sci. Technol. A 25, 1317 (2007).
http://dx.doi.org/10.1116/1.2764082
18.
18.Y. P. Zhao, D. X. Ye, G. C. Wang, and T. M. Lu, Proc. SPIE 5219, 59 (2003).
http://dx.doi.org/10.1117/12.505253
19.
19.J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. -Y. Lin, W. Liu, and J. A. Smart, Nat. Photonics 1, 176 (2007).
20.
20.H. Yumoto, T. Sako, Y. Gotoh, K. Nishiyama, and T. Kaneko, J. Cryst. Growth 203, 136 (1999).
http://dx.doi.org/10.1016/S0022-0248(99)00079-2
21.
21.Q. Wan, Z. T. Song, S. L. Feng, and T. H. Wang, Appl. Phys. Lett. 85, 4759 (2004).
http://dx.doi.org/10.1063/1.1808877
22.
22.S. J. Limmer, S. V. Cruz, and G. Z. Cao, Appl. Phys. A: Mater. Sci. Process. 79, 421 (2004).
http://dx.doi.org/10.1007/s00339-004-2738-3
23.
23.See supplementary material at http://dx.doi.org/10.1063/1.3395395 for the spectral transmittance.[Supplementary Material]
24.
24.M. S. Kim, B. G. Kim, and J. Kim, Appl. Mater. & Interfaces 1, 1264 (2009).
http://dx.doi.org/10.1021/am900155y
25.
25.K. Kawano and C. Adachi, Adv. Funct. Mater. 19, 3934 (2009).
http://dx.doi.org/10.1002/adfm.200901573
26.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/96/15/10.1063/1.3395395
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Device schematic with embedded nanoelectrodes. The randomly oriented nanorod electrodes were deposited on an ITO-coated glass substrate using an oblique electron-beam evaporation method, offering 3D conducting pathways for low-mobility holes.

Image of FIG. 2.

Click to view

FIG. 2.

SEMs and transmission electron micrographs of deposited ITO nanorods on an ITO glass substrate. (a) tilted top view, and (b) cross-sectional view of free-standing nanorods, where the orientations are fairly random; (c) the spacing between rods is on the order of tens of nanometers, sufficient for the infiltration of active materials and (d) the initial formation of a core-shell structure for a single ITO nanorod.

Image of FIG. 3.

Click to view

FIG. 3.

Surface topology and the corresponding current distribution for an ITO film and nanorod electrodes. (a) The measured height image and projected current distribution of an ITO film electrode on a glass substrate; (b) the corresponding 2D topology overlaid with the map of isocurrent contours at a threshold of 34.1 nA; (c) and (d) are the same as (a) and (b), respectively.

Image of FIG. 4.

Click to view

FIG. 4.

Measured current-density-voltage and lifetime characteristics for a rod cell and a film cell. (a) The power conversion efficiency of the rod cell is increased to about 3.4% and 4.4% under one-sun and five-sun illumination intensities, respectively. (b) The measured lifetime characteristics under a 5× concentration at ambient conditions.

Tables

Generic image for table

Click to view

Table I.

Cell characteristics under one-sun and five-sun illumination intensities.

Loading

Article metrics loading...

/content/aip/journal/apl/96/15/10.1063/1.3395395
2010-04-16
2014-04-16

Abstract

In this paper, distinctive indium-tin-oxide (ITO) nanorods are employed to serve as buried electrodes for polymer-based solar cells. The embedded nanoelectrodes allow three-dimensional conducting pathways for low-mobility holes, offering a highly scaffolded cell architecture in addition to bulk heterojunctions. As a result, the power conversion efficiency of a polymercell with ITO nanoelectrodes is increased to about 3.4% and 4.4% under one-sun and five-sun illumination conditions, respectively, representing an enhancement factor of up to and 36% compared to a conventional counterpart. Also, the corresponding device lifetime is prolonged twice as much to about 110 min under five-sun illumination.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/96/15/1.3395395.html;jsessionid=bk880dgykryg.x-aip-live-01?itemId=/content/aip/journal/apl/96/15/10.1063/1.3395395&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Embedded indium-tin-oxide nanoelectrodes for efficiency and lifetime enhancement of polymer-based solar cells
http://aip.metastore.ingenta.com/content/aip/journal/apl/96/15/10.1063/1.3395395
10.1063/1.3395395
SEARCH_EXPAND_ITEM