1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Embedded indium-tin-oxide nanoelectrodes for efficiency and lifetime enhancement of polymer-based solar cells
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/96/15/10.1063/1.3395395
1.
1.M. A. Green, Third Generation Photovoltaics: Advanced Solar Electricity Generation (Springer, Berlin, 2003).
2.
2.J. J. M. Halls, C. A. Walsh, N. C. Greenham, E. A. Marseglia, R. H. Friend, S. C. Moratti, and A. B. Holmes, Nature (London) 376, 498 (1995).
http://dx.doi.org/10.1038/376498a0
3.
3.W. Ma, C. Yang, X. Gong, K. Lee, and A. J. Heeger, Adv. Funct. Mater. 15, 1617 (2005).
http://dx.doi.org/10.1002/adfm.200500211
4.
4.M. Reyes-Reyes, K. Kim, J. Dewald, R. López-sandoval, A. Avadhanula, S. Curran, and D. L. Carroll, Org. Lett. 7, 5749 (2005).
http://dx.doi.org/10.1021/ol051950y
5.
5.J. Y. Kim, S. H. Kim, H. H. Lee, K. Lee, W. Ma, X. Gong, and A. J. Heeger, Adv. Mater. 18, 572 (2006).
http://dx.doi.org/10.1002/adma.200501825
6.
6.K. M. Coakley and M. D. McGehee, Chem. Mater. 16, 4533 (2004).
http://dx.doi.org/10.1021/cm049654n
7.
7.M. C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, and C. J. Brabec, Adv. Mater. 18, 789 (2006).
http://dx.doi.org/10.1002/adma.200501717
8.
8.W. Shockley and H. J. Queisser, J. Appl. Phys. 32, 510 (1961).
http://dx.doi.org/10.1063/1.1736034
9.
9.M. Aryal, F. Buyukserin, K. Mielczarek, X. M. Zhao, J. Gao, A. Zakhidov, and W. Hu, J. Vac. Sci. Technol. B 26, 2562 (2008).
http://dx.doi.org/10.1116/1.2981076
10.
10.C. Goh, K. M. Coakley, and M. D. McGehee, Nano Lett. 5, 1545 (2005).
http://dx.doi.org/10.1021/nl050704c
11.
11.H. S. Wang, L. H. Lin, S. Y. Chen, Y. L. Wang, and K. H. Wei, Nanotechnology 20, 075201 (2009).
http://dx.doi.org/10.1088/0957-4484/20/7/075201
12.
12.A. C. Mayer, S. R. Scully, B. E. Hardin, M. W. Rowell, and M. D. McGehee, Mater. Today 10, 28 (2007).
http://dx.doi.org/10.1016/S1369-7021(07)70276-6
13.
13.T. W. Zeng, Y. Y. Lin, H. H. Lo, C. W. Chen, C. H. Chen, S. C. Liou, H. Y. Huang, and W. F. Su, Nanotechnology 17, 5387 (2006).
http://dx.doi.org/10.1088/0957-4484/17/21/017
14.
14.M. Niggemann, M. Glatthaar, A. Gombert, A. Hinsch, and V. Wittwer, Thin Solid Films 451-452, 619 (2004).
http://dx.doi.org/10.1016/j.tsf.2003.11.028
15.
15.P. Yu, C. H. Chang, C. H. Chiu, C. S. Yang, J. C. Yu, H. C. Kuo, S. H. Hsu, and Y. C. Chang, Adv. Mater. 21, 1618 (2009).
http://dx.doi.org/10.1002/adma.200802563
16.
16.C. H. Chang, P. Yu, and C. S. Yang, Appl. Phys. Lett. 94, 051114 (2009).
http://dx.doi.org/10.1063/1.3079329
17.
17.M. M. Hawkeye and M. J. Brett, J. Vac. Sci. Technol. A 25, 1317 (2007).
http://dx.doi.org/10.1116/1.2764082
18.
18.Y. P. Zhao, D. X. Ye, G. C. Wang, and T. M. Lu, Proc. SPIE 5219, 59 (2003).
http://dx.doi.org/10.1117/12.505253
19.
19.J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. -Y. Lin, W. Liu, and J. A. Smart, Nat. Photonics 1, 176 (2007).
20.
20.H. Yumoto, T. Sako, Y. Gotoh, K. Nishiyama, and T. Kaneko, J. Cryst. Growth 203, 136 (1999).
http://dx.doi.org/10.1016/S0022-0248(99)00079-2
21.
21.Q. Wan, Z. T. Song, S. L. Feng, and T. H. Wang, Appl. Phys. Lett. 85, 4759 (2004).
http://dx.doi.org/10.1063/1.1808877
22.
22.S. J. Limmer, S. V. Cruz, and G. Z. Cao, Appl. Phys. A: Mater. Sci. Process. 79, 421 (2004).
http://dx.doi.org/10.1007/s00339-004-2738-3
23.
23.See supplementary material at http://dx.doi.org/10.1063/1.3395395 for the spectral transmittance.[Supplementary Material]
24.
24.M. S. Kim, B. G. Kim, and J. Kim, Appl. Mater. & Interfaces 1, 1264 (2009).
http://dx.doi.org/10.1021/am900155y
25.
25.K. Kawano and C. Adachi, Adv. Funct. Mater. 19, 3934 (2009).
http://dx.doi.org/10.1002/adfm.200901573
26.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/96/15/10.1063/1.3395395
Loading
/content/aip/journal/apl/96/15/10.1063/1.3395395
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/96/15/10.1063/1.3395395
2010-04-16
2014-07-30

Abstract

In this paper, distinctive indium-tin-oxide (ITO) nanorods are employed to serve as buried electrodes for polymer-based solar cells. The embedded nanoelectrodes allow three-dimensional conducting pathways for low-mobility holes, offering a highly scaffolded cell architecture in addition to bulk heterojunctions. As a result, the power conversion efficiency of a polymercell with ITO nanoelectrodes is increased to about 3.4% and 4.4% under one-sun and five-sun illumination conditions, respectively, representing an enhancement factor of up to and 36% compared to a conventional counterpart. Also, the corresponding device lifetime is prolonged twice as much to about 110 min under five-sun illumination.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/96/15/1.3395395.html;jsessionid=8ofresp6ncqil.x-aip-live-02?itemId=/content/aip/journal/apl/96/15/10.1063/1.3395395&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Embedded indium-tin-oxide nanoelectrodes for efficiency and lifetime enhancement of polymer-based solar cells
http://aip.metastore.ingenta.com/content/aip/journal/apl/96/15/10.1063/1.3395395
10.1063/1.3395395
SEARCH_EXPAND_ITEM