1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Ultimate quality factor of silica microtoroid resonant cavities
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/96/15/10.1063/1.3398008
1.
1.J. G. Zhu, S. K. Ozdemir, Y. F. Xiao, L. Li, L. N. He, D. R. Chen, and L. Yang, Nat. Photonics 4, 46 (2010).
http://dx.doi.org/10.1038/nphoton.2009.237
2.
2.A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, Science 317, 783 (2007).
http://dx.doi.org/10.1126/science.1145002
3.
3.H. -S. Choi, X. Zhang, and A. M. Armani, Opt. Lett. 35, 459 (2010).
http://dx.doi.org/10.1364/OL.35.000459
4.
4.G. Anetsberger, R. Riviere, A. Schliesser, O. Arcizet, and T. J. Kippenberg, Nat. Photonics 2, 627 (2008).
http://dx.doi.org/10.1038/nphoton.2008.199
5.
5.H. Rokhsari and K. J. Vahala, Phys. Rev. Lett. 92, 253905 (2004).
http://dx.doi.org/10.1103/PhysRevLett.92.253905
6.
6.M. L. Gorodetsky, A. A. Savchenkov, and V. S. Ilchenko, Opt. Lett. 21, 453 (1996).
http://dx.doi.org/10.1364/OL.21.000453
7.
7.D. W. Vernooy, V. S. Ilchenko, H. Mabuchi, E. W. Streed, and H. J. Kimble, Opt. Lett. 23, 247 (1998).
http://dx.doi.org/10.1364/OL.23.000247
8.
8.M. L. Gorodetsky, A. D. Pryamikov, and V. S. Ilchenko, J. Opt. Soc. Am. B 17, 1051 (2000).
http://dx.doi.org/10.1364/JOSAB.17.001051
9.
9.J. C. Knight, G. Cheung, F. Jacques, and T. A. Birks, Opt. Lett. 22, 1129 (1997).
http://dx.doi.org/10.1364/OL.22.001129
10.
10.G. M. Hale and M. R. Querry, Appl. Opt. 12, 555 (1973).
http://dx.doi.org/10.1364/AO.12.000555
11.
11.D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Nature (London) 421, 925 (2003).
http://dx.doi.org/10.1038/nature01371
12.
12.B. G. Streetman and S. Banerjee, Solid State Electronic Devices, 6th ed. (Prentice Hall, Englewood Cliffs, NJ, 2005).
13.
13.R. B. Fair, J. Electrochem. Soc. 144, 708 (1997).
http://dx.doi.org/10.1149/1.1837473
14.
14.P. G. Snyder, M. C. Rost, G. H. Bu-Abbud, J. A. Woollam, and S. A. Alterovitz, J. Appl. Phys. 60, 3293 (1986).
http://dx.doi.org/10.1063/1.337695
15.
15.S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, Phys. Rev. Lett. 91, 043902 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.043902
16.
16.D. S. Weiss, V. Sandoghbar, J. Hare, V. Lefevre-Seguin, J. -M. Raimond, and S. Haroche, Opt. Lett. 20, 1835 (1995).
http://dx.doi.org/10.1364/OL.20.001835
17.
17.T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, Opt. Lett. 27, 1669 (2002).
http://dx.doi.org/10.1364/OL.27.001669
18.
18.H. -S. Hsu, C. Cai, and A. M. Armani, Opt. Express 17, 23265 (2009).
http://dx.doi.org/10.1364/OE.17.023265
19.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/96/15/10.1063/1.3398008
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

The calculated dependence of the quality factor on the refractive index and the resonant wavelength. The Q factor decreases as the refractive index decreases and the wavelength increases. Because the effective refractive index is directly proportional to the bulk refractive index of silica assuming all geometrical parameters are constant, Q was plotted as a function of the bulk refractive index to increase precision in the plot.

Image of FIG. 2.

Click to view

FIG. 2.

A fine scan (the forward scan direction) of the fundamental transverse mode of the microtoroid fabricated from the film with boron concentration of in silicon at 848.8 nm with a dual-Lorentz fit (solid line). The resonance shows splitting and the quality factor of the left and right peak is and separately. Inset: Optical micrograph of a microtoroid coupled to tapered optical fiber during testing.

Image of FIG. 3.

Click to view

FIG. 3.

Measured quality factor as a function of refractive index or boron dopant concentration at three wavelengths: 630, 850, and 980 nm. The Q factor decreases as the refractive index decreases and the wavelength increases.

Tables

Generic image for table

Click to view

Table I.

Quality factor and refractive index dependence on boron concentration. [As the concentration of boron in the silicon wafer increases, the refractive index decreases and the Q factor decreases.]

Loading

Article metrics loading...

/content/aip/journal/apl/96/15/10.1063/1.3398008
2010-04-15
2014-04-23

Abstract

Silica optical microcavities with quality (Q factors above have applications throughout science and engineering. While both the microtoroid and microsphere resonantcavity have demonstrated , only the microsphere has surpassed . Surprisingly, the reason for this performance disparity is directly related to type of silicon substrate used in the fabrication process. In the present work, the theoretical Q of planar toroidal silicaresonantcavities is calculated and compared to experimental results from a series of devices fabricated from oxide on dopedsilicon wafers. As predicted, the Q depends on the substrate dopant concentration.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/96/15/1.3398008.html;jsessionid=29cravca2mwl0.x-aip-live-03?itemId=/content/aip/journal/apl/96/15/10.1063/1.3398008&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Ultimate quality factor of silica microtoroid resonant cavities
http://aip.metastore.ingenta.com/content/aip/journal/apl/96/15/10.1063/1.3398008
10.1063/1.3398008
SEARCH_EXPAND_ITEM