1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Giant magnetocaloric effects by tailoring the phase transitions
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/96/17/10.1063/1.3399773
1.
1.E. Brück, J. Phys. D 38, R381 (2005).
http://dx.doi.org/10.1088/0022-3727/38/23/R01
2.
2.V. K. Pecharsky and K. A. Gschneidner, Phys. Rev. Lett. 78, 4494 (1997).
http://dx.doi.org/10.1103/PhysRevLett.78.4494
3.
3.O. Tegus, E. Brück, K. H. J. Buschow, and F. R. de Boer, Nature (London) 415, 150 (2002).
http://dx.doi.org/10.1038/415150a
4.
4.H. Wada and Y. Tanabe, Appl. Phys. Lett. 79, 3302 (2001).
http://dx.doi.org/10.1063/1.1419048
5.
5.F. X. Hu, B. G. Shen, J. R. Sun, Z. H. Cheng, G. H. Rao, and X. X. Zhang, Appl. Phys. Lett. 78, 3675 (2001).
http://dx.doi.org/10.1063/1.1375836
6.
6.T. Krenke, E. Duman, M. Acet, E. F. Wassermann, X. Moya, L. Mañosa, and A. Planes, Nature Mater. 4, 450 (2005).
http://dx.doi.org/10.1038/nmat1395
7.
7.O. Beckman and L. Lundgren, in Handbook of Magnetic Materials, edited by K. H. J. Buschow (Elsevier, New York, 1991), Vol. 6, Chap. 3.
8.
8.T. Kanomata, H. Ishigaki, T. Suzuki, H. Yoshida, S. Abe, and T. Kaneko, J. Magn. Magn. Mater. 140-144, 131 (1995).
http://dx.doi.org/10.1016/0304-8853(94)00833-7
9.
9.J. T. Wang, D. S. Wang, C. Chen, O. Nashima, T. Kanomata, H. Mizuseki, and Y. Kawazoe, Appl. Phys. Lett. 89, 262504 (2006).
http://dx.doi.org/10.1063/1.2424273
10.
10.K. Koyama, M. Sakai, T. Kanomata, and K. Watanabe, Jpn. J. Appl. Phys., Part 1 43, 8036 (2004).
http://dx.doi.org/10.1143/JJAP.43.8036
11.
11.V. Johnson, Inorg. Chem. 14, 1117 (1975).
http://dx.doi.org/10.1021/ic50147a032
12.
12.S. Niziol, A. Weselucha, W. Bazela, and A. Szytula, Solid State Commun. 39, 1081 (1981).
http://dx.doi.org/10.1016/0038-1098(81)90213-1
13.
13.S. Niziol, A. Zieba, R. Zach, M. Baj, and L. Dmowski, J. Magn. Magn. Mater. 38, 205 (1983).
http://dx.doi.org/10.1016/0304-8853(83)90046-X
14.
14.S. Anzai and K. Ozawa, Phys. Rev. B 18, 2173 (1978).
http://dx.doi.org/10.1103/PhysRevB.18.2173
15.
15.S. Niziol, R. Zach, J. P. Senateur, and J. Beille, J. Magn. Magn. Mater. 79, 333 (1989).
http://dx.doi.org/10.1016/0304-8853(89)90188-1
16.
16.S. Kaprzyk and S. Niziol, J. Magn. Magn. Mater. 87, 267 (1990).
http://dx.doi.org/10.1016/0304-8853(90)90759-J
17.
17.S. Lin, O. Tegus, E. Brück, W. Dagula, T. J. Gortenmulder, and K. H. J. Buschow, IEEE Trans. Magn. 42, 3776 (2006).
http://dx.doi.org/10.1109/TMAG.2006.884516
18.
18.J. Rodríguez-Carvajal, Physica B 192, 55 (1993).
http://dx.doi.org/10.1016/0921-4526(93)90108-I
19.
19.L. Caron, Z. Q. Ou, T. T. Nguyen, D. T. Cam Thanh, O. Tegus, and E. Brück, J. Magn. Magn. Mater. 321, 3559 (2009).
http://dx.doi.org/10.1016/j.jmmm.2009.06.086
20.
20.See supplementary material at http://dx.doi.org/10.1063/1.3399773 for phase diagram and magnetic response of the .[Supplementary Material]
21.
21.B. Hernando, J. L. Sánchez Llamazares, V. M. Prida, D. Baldomir, D. Serantes, M. Ilyn, and J. González, Appl. Phys. Lett. 94, 222502 (2009).
http://dx.doi.org/10.1063/1.3147875
http://aip.metastore.ingenta.com/content/aip/journal/apl/96/17/10.1063/1.3399773
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

curves measured in magnetic field of the samples (a) and their corresponding as a function of temperature under the field change of (lower curves) and (upper curves) (b).

Image of FIG. 2.

Click to view

FIG. 2.

Some selected XRD patterns of the sample measured at 100, 250, and 400 K in zero-field upon heating. At 100 K, the pattern confirms the coexistence of the orth. phase ( Miller indices without *) and the hex. phase ( Miller indices with *).

Image of FIG. 3.

Click to view

FIG. 3.

Temperature dependence of the phase fraction (vol %) of the orth. structure as derived from XRD patterns measured with increasing and decreasing temperature for the sample.

Tables

Generic image for table

Click to view

Table I.

Values of , , maximal under the field change , measured at 5 K, and the low-temperature phase fraction (vol %) of the orth. and hex. structures obtained from the XRD measured at 100 K for some MnCoGe-type alloys.

Loading

Article metrics loading...

/content/aip/journal/apl/96/17/10.1063/1.3399773
2010-04-27
2014-04-16

Abstract

The MnCoGe alloy can crystallize in either the hexagonal - or the orthorhombic TiNiSi-type of structure. In both phases MnCoGe behaves like a typical ferromagnet with a second-order magnetic phase transition. For with B on interstitial positions, we discover a giant magnetocaloric effect associated with a single first-order magnetostructuralphase transition, which can be achieved by tuning the magnetic and structural transitions to coincide. The results obtained on the MnCoGe-type alloys may be extensible to other types of magnetic materials undergoing a first-order structural transformation and can open up some possibilities for searching magnetic refrigerants for room-temperature applications.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/96/17/1.3399773.html;jsessionid=lga1fiwknnvw.x-aip-live-06?itemId=/content/aip/journal/apl/96/17/10.1063/1.3399773&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Giant magnetocaloric effects by tailoring the phase transitions
http://aip.metastore.ingenta.com/content/aip/journal/apl/96/17/10.1063/1.3399773
10.1063/1.3399773
SEARCH_EXPAND_ITEM