1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Interfacial electronic structure of copper hexadecafluorophthalocyanine and phthalocyanatotin (IV) dichloride studied by photoemission spectroscopy
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/96/17/10.1063/1.3406214
1.
1.S. H. Liu, W. M. Wang, A. L. Briseno, S. C. B. Mannsfeld, and Z. N. Bao, Adv. Mater. 21, 1217 (2009).
http://dx.doi.org/10.1002/adma.200802202
2.
2.H. Sirringhaus, Adv. Mater. 21, 3859 (2009).
http://dx.doi.org/10.1002/adma.200901136
3.
3.N. R. Armstrong, W. N. Wang, D. M. Alloway, D. Placencia, E. Ratcliff, and M. Brumbach, Macromol. Rapid Commun. 30, 717 (2009).
http://dx.doi.org/10.1002/marc.200900075
4.
4.W. J. Potscavage, Jr., A. Sharma, and B. Kippelen, Acc. Chem. Res. 42, 1758 (2009).
http://dx.doi.org/10.1021/ar900139v
5.
5.N. Koch, ChemPhysChem 8, 1438 (2007).
http://dx.doi.org/10.1002/cphc.200700177
6.
6.O. V. Molodtsova and M. Knupfer, J. Appl. Phys. 99, 053704 (2006).
http://dx.doi.org/10.1063/1.2175468
7.
7.K. Akaike, K. Kanai, Y. Ouchi, and K. Seki, Appl. Phys. Lett. 95, 113306 (2009).
http://dx.doi.org/10.1063/1.3231926
8.
8.B. P. Rand, D. P. Burk, and S. R. Forrest, Phys. Rev. B 75, 115327 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.115327
9.
9.J. X. Tang, Y. C. Zhou, Z. T. Liu, C. S. Lee, and S. T. Lee, Appl. Phys. Lett. 93, 043512 (2008).
http://dx.doi.org/10.1063/1.2966155
10.
10.M. C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, and C. J. Brabec, Adv. Mater. 18, 789 (2006).
http://dx.doi.org/10.1002/adma.200501717
11.
11.Z. T. Liu, M. F. Lo, H. B. Wang, T. W. Ng, V. A. L. Roy, C. S. Lee, and S. T. Lee, Appl. Phys. Lett. 95, 093307 (2009).
http://dx.doi.org/10.1063/1.3222975
12.
12.M. Brumbach, D. Placencia, and N. R. Armstrong, J. Phys. Chem. C 112, 3142 (2008).
http://dx.doi.org/10.1021/jp0772171
13.
13.J. Wang, H. B. Wang, X. J. Yan, H. C. Huang, and D. H. Yan, Appl. Phys. Lett. 87, 093507 (2005).
http://dx.doi.org/10.1063/1.2037204
14.
14.H. B. Wang, J. Wang, H. C. Huang, X. J. Yan, and D. H. Yan, Org. Electron. 7, 369 (2006).
http://dx.doi.org/10.1016/j.orgel.2006.04.004
15.
15.K. M. Lau, J. X. Tang, H. Y. Sun, C. S. Lee, S. T. Lee, and D. H. Yan, Appl. Phys. Lett. 88, 173513 (2006).
http://dx.doi.org/10.1063/1.2198484
16.
16.Y. L. Gao, H. J. Ding, H. B. Wang, and D. H. Yan, Appl. Phys. Lett. 91, 142112 (2007).
http://dx.doi.org/10.1063/1.2784944
17.
17.S. Braun, W. R. Salaneck, and M. Fahlman, Adv. Mater. 21, 1450 (2009).
http://dx.doi.org/10.1002/adma.200802893
18.
18.C. Tengstedt, W. Osikowicz, W. R. Salaneck, I. D. Parker, C. Hsu, and M. Fahlman, Appl. Phys. Lett. 88, 053502 (2006).
http://dx.doi.org/10.1063/1.2168515
19.
19.H. Vázquez, W. Gao, F. Flores, and A. Kahn, Phys. Rev. B 71, 041306 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.041306
20.
20.H. Vazquez, F. Flores, and A. Kahn, Org. Electron. 8, 241 (2007).
http://dx.doi.org/10.1016/j.orgel.2006.07.006
21.
21.W. Chen, S. Chen, H. Huang, D. C. Qi, X. Y. Gao, and A. T. S. Wee, Appl. Phys. Lett. 92, 063308 (2008).
http://dx.doi.org/10.1063/1.2857460
22.
22.W. Chen, S. Chen, S. Chen, Y. L. Huang, H. Huang, D. C. Qi, X. Y. Gao, J. Ma, and A. T. S. Wee, J. Appl. Phys. 106, 064910 (2009).
http://dx.doi.org/10.1063/1.3225918
23.
23.H. B. Wang, X. J. Wang, H. C. Huang, and D. H. Yan, Appl. Phys. Lett. 93, 103307 (2008).
http://dx.doi.org/10.1063/1.2979707
24.
24.A. J. Campbell, D. D. C. Bradley, J. Laubender, and M. Sokolowski, J. Appl. Phys. 86, 5004 (1999).
http://dx.doi.org/10.1063/1.371471
25.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/96/17/10.1063/1.3406214
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

UPS spectra showing (a) the secondary electron cutoff and (b) the HOMO region near the Fermi level as a function of increasing coverage on . Zero binding energy corresponds to the Fermi level of the substrate.

Image of FIG. 2.

Click to view

FIG. 2.

XPS spectra of , , , and as a function of increasing coverage on .

Image of FIG. 3.

Click to view

FIG. 3.

Shifts of XPS peaks including , , and with increasing coverage on . The shifts of energy levels indicate the presence of energy level bending in the organic layers, which are consistent with the UPS results.

Image of FIG. 4.

Click to view

FIG. 4.

A schematic energy level diagram of the heterojunction. All the values shown are in unit of electron volt.

Loading

Article metrics loading...

/content/aip/journal/apl/96/17/10.1063/1.3406214
2010-04-27
2014-04-21

Abstract

We investigated the interfacial electronic structure of the n-n isotype organic heterojunction formed between copper hexadecafluorophthalocyanine and phthalocyanatotin (IV) dichloride using ultraviolet and x-ray photoemission spectroscopies. Energy level bending was observed at the heterojunction interface due to the formation of an electron accumulation region in the layer and an electron depletion region in the layer. The formation of organic heterojunction was explained by charge exchange at the interface due to their different work functions.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/96/17/1.3406214.html;jsessionid=hug3lfi1k9ja.x-aip-live-06?itemId=/content/aip/journal/apl/96/17/10.1063/1.3406214&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Interfacial electronic structure of copper hexadecafluorophthalocyanine and phthalocyanatotin (IV) dichloride studied by photoemission spectroscopy
http://aip.metastore.ingenta.com/content/aip/journal/apl/96/17/10.1063/1.3406214
10.1063/1.3406214
SEARCH_EXPAND_ITEM