1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Electron transport in rubrene single-crystal transistors
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/96/18/10.1063/1.3419899
1.
1.M. Yamagishi, J. Takeya, Y. Tominari, Y. Nakazawa, T. Kuroda, S. Ikehata, M. Uno, T. Nishikawa, and T. Kawase, Appl. Phys. Lett. 90, 182117 (2007).
http://dx.doi.org/10.1063/1.2736208
2.
2.R. W. I. de Boer, M. E. Gershenson, A. F. Morpurgo, and V. Podzorov, Phys. Status Solidi A 201, 1302 (2004).
http://dx.doi.org/10.1002/pssa.200404336
3.
3.V. Podzorov, V. M. Pudalov, and M. E. Gershenson, Appl. Phys. Lett. 82, 1739 (2003).
http://dx.doi.org/10.1063/1.1560869
4.
4.V. Podzorov, S. Sysoev, E. Loginova, V. Pudalov, and M. Gershenson, Appl. Phys. Lett. 83, 3504 (2003).
http://dx.doi.org/10.1063/1.1622799
5.
5.J. Takeya, M. Yamagishi, Y. Tominari, R. Hirahara, Y. Nakazawa, T. Nishikawa, T. Kawase, T. Shimoda, and S. Ogawa, Appl. Phys. Lett. 90, 102120 (2007).
http://dx.doi.org/10.1063/1.2711393
6.
6.J. Takeya, J. Kato, K. Hara, M. Yamagishi, R. Hirahara, K. Yamada, Y. Nakazawa, S. Ikehata, K. Tsukagoshi, Y. Aoyagi, T. Takenobu, and Y. Iwasa, Phys. Rev. Lett. 98, 196804 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.196804
7.
7.T. Takahashi, T. Takenobu, J. Takeya, and Y. Iwasa, Appl. Phys. Lett. 88, 033505 (2006).
http://dx.doi.org/10.1063/1.2166698
8.
8.D. A. da Silva Filho, E. G. Kim, and J. L. Bredas, Adv. Mater. (Weinheim, Ger.) 17, 1072 (2005).
http://dx.doi.org/10.1002/adma.200401866
9.
9.T. Takenobu, T. Takahashi, J. Takeya, and Y. Iwasa, Appl. Phys. Lett. 90, 013507 (2007).
http://dx.doi.org/10.1063/1.2408642
10.
10.J. Zaumseil and H. Sirringhaus, Chem. Rev. (Washington, D.C.) 107, 1296 (2007).
http://dx.doi.org/10.1021/cr0501543
11.
11.T. Takahashi, T. Takenobu, J. Takeya, and Y. Iwasa, Adv. Funct. Mater. 17, 1623 (2007).
http://dx.doi.org/10.1002/adfm.200700046
12.
12.M. Muccini, Nature Mater. 5, 605 (2006).
http://dx.doi.org/10.1038/nmat1699
13.
13.S. Z. Bisri, T. Takenobu, Y. Yomogida, H. Shimotani, T. Yamao, S. Hotta, and Y. Iwasa, Adv. Funct. Mater. 19, 1728 (2009).
http://dx.doi.org/10.1002/adfm.200900028
14.
14.S. Z. Bisri, T. Takahashi, T. Takenobu, M. Yahiro, C. Adachi, and Y. Iwasa, Jpn. J. Appl. Phys., Part 2 46, L596 (2007).
http://dx.doi.org/10.1143/JJAP.46.L596
15.
15.R. A. Laudise, Ch. Kloc, P. G. Simpkins, and T. Siegrist, J. Cryst. Growth 187, 449 (1998).
http://dx.doi.org/10.1016/S0022-0248(98)00034-7
16.
16.See supplementary material at http://dx.doi.org/10.1063/1.3419899 for S1: multiple purification process of the single crystals. S2: the optical characterization of electron traps removal. S3: aging time dependence of electron transport in the five-times purified single crystal device.[Supplementary Material]
17.
17.T. Takenobu, S. Z. Bisri, T. Takahashi, M. Yahiro, C. Adachi, and Y. Iwasa, Phys. Rev. Lett. 100, 066601 (2008).
http://dx.doi.org/10.1103/PhysRevLett.100.066601
18.
18.V. C. Sundar, J. Zaumseil, V. Podzorov, E. Menard, R. L. Willett, T. Someya, M. E. Gershenson, and J. A. Rogers, Science 303, 1644 (2004).
http://dx.doi.org/10.1126/science.1094196
19.
19.C. Reese and Z. Bao, Adv. Mater. (Weinheim, Ger.) 19, 4535 (2007).
http://dx.doi.org/10.1002/adma.200701139
20.
20.D. Käfer and G. Witte, Phys. Chem. Chem. Phys. 7, 2850 (2005).
http://dx.doi.org/10.1039/b507620j
21.
21.A. J. Maliakal, J. Y. C. Chen, W. -Y. So, S. Jockusch, B. Kim, M. F. Ottaviani, A. Modelli, N. J. Turro, C. Nuckolls, and A. P. Ramirez, Chem. Mater. 21, 5519 (2009).
http://dx.doi.org/10.1021/cm902699s
22.
22.T. Kaji, T. Takenobu, A. F. Morpurgo, and Y. Iwasa, Adv. Mater. (Weinheim, Ger.) 21, 3689 (2009).
http://dx.doi.org/10.1002/adma.200900276
23.
23.O. Mitrofanov, D. V. Lang, C. Kloc, J. M. Wikberg, T. Siegrist, W. Y. So, M. A. Sergent, and A. P. Ramirez, Phys. Rev. Lett. 97, 166601 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.166601
24.
24.O. Mitrofanov, C. Kloc, T. Siegrist, D. V. Lang, W. Y. So, and A. P. Ramirez, Appl. Phys. Lett. 91, 212106 (2007).
http://dx.doi.org/10.1063/1.2815939
25.
25.I. Hulea, S. Fratini, H. Xie, C. Mulder, N. Iossad, G. Rastelli, S. Ciuchi, and A. Morpurgo, Nature Mater. 5, 982 (2006).
http://dx.doi.org/10.1038/nmat1774
26.
26.E. Menard, V. Podzorov, S. H. Hur, A. Gaur, M. E. Gershenson, and J. A. Rogers, Adv. Mater. (Weinheim, Ger.) 16, 2097 (2004).
http://dx.doi.org/10.1002/adma.200401017
27.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/96/18/10.1063/1.3419899
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) Optical microscopy image and schematic diagram of typical devices used. (b) output characteristics of a rubrene ambipolar device with fast-evaporated thick Ca electrode on a first purified single crystal. (c) Low bias output characteristics of the same device.

Image of FIG. 2.

Click to view

FIG. 2.

(a) Multiple purification dependence of transfer characteristics. The current axes have been scaled by the capacitance of each device to facilitate comparison. Lines with open dots, diamonds, and squares indicate the characteristics of once purified (as-grown), three times purified, and five times purified crystals, respectively. (b) Purification cycle dependent electron mobility (red dots) and accumulation threshold voltage (blue diamonds) of rubrene single-crystal transistors. The symbols represent the average value of 6 devices with the error bars show the minimum and the maximum values.

Image of FIG. 3.

Click to view

FIG. 3.

(a) Aging time dependence of transfer characteristics. The line with open dots indicates the characteristics of the as-fabricated device, and those with open squares and open diamonds indicate the characteristics of the identical device after aging for 70 h and 16 days, respectively. (b) Aging time dependence of electron mobility and threshold voltage.

Loading

Article metrics loading...

/content/aip/journal/apl/96/18/10.1063/1.3419899
2010-05-06
2014-04-17

Abstract

We report a study of impurity effects on the electron transport of rubrene single crystals. A significant improvement of electron carrier mobility up to is achieved by performing multiple purifications of single crystals and device aging inside an -filled glove box. The hole/electron mobility ratio obtained is in good agreement with the reported theoretical calculation, suggesting that the intrinsic electron transport of organic semiconductors is also exploitable in a manner similar to that of hole transport.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/96/18/1.3419899.html;jsessionid=6sfh8kh9l2s07.x-aip-live-01?itemId=/content/aip/journal/apl/96/18/10.1063/1.3419899&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Electron transport in rubrene single-crystal transistors
http://aip.metastore.ingenta.com/content/aip/journal/apl/96/18/10.1063/1.3419899
10.1063/1.3419899
SEARCH_EXPAND_ITEM