1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Two mechanisms of exciton dissociation in rubrene single crystals
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/96/18/10.1063/1.3421539
1.
1.H. Najafov, I. Biaggio, V. Podzorov, M. F. Calhoun, and M. E. Gershenson, Phys. Rev. Lett. 96, 056604 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.056604
2.
2.H. Najafov, B. Lyu, I. Biaggio, and V. Podzorov, Phys. Rev. B 77, 125202 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.125202
3.
3.V. Podzorov, V. M. Pugalov, and M. E. Gershenson, Appl. Phys. Lett. 85, 6039 (2004).
http://dx.doi.org/10.1063/1.1836877
4.
4.M. Pope and C. E. Swenberg, Annu. Rev. Phys. Chem. 35, 613 (1984).
http://dx.doi.org/10.1146/annurev.pc.35.100184.003145
5.
5.E. A. Silinsh and V. Capek, Organic Molecular Crystals: Interaction, Localization, and Transport Phenomena (American Institute of Physics, New York, 1994).
6.
6.M. Pope and C. E. Swenberg, Electronic Processes in Organic Crystals and Polymers (Oxford University Press, New York, 1999).
7.
7.M. Silver, D. Olness, M. Swicord, and R. C. Jarnagin, Phys. Rev. Lett. 10, 12 (1963).
http://dx.doi.org/10.1103/PhysRevLett.10.12
8.
8.C. L. Braun, Phys. Rev. Lett. 21, 215 (1968).
http://dx.doi.org/10.1103/PhysRevLett.21.215
9.
9.T. E. Orlowski and H. Scher, Phys. Rev. B 27, 7691 (1983).
http://dx.doi.org/10.1103/PhysRevB.27.7691
10.
10.O. Ostroverkhova, D. G. Cooke, F. A. Hegmann, J. E. Anthony, V. Podzorov, E. Gershenson, O. D. Jurchescu, and T. T. M. Palstra, Appl. Phys. Lett. 88, 162101 (2006).
http://dx.doi.org/10.1063/1.2193801
11.
11.A. Tapponnier, I. Biaggio, M. Koehler, and P. Günter, Appl. Phys. Lett. 83, 5473 (2003).
http://dx.doi.org/10.1063/1.1629785
12.
12.V. Podzorov, E. Menard, S. Pereversev, B. Yakshinsky, T. Madey, J. A. Rogers, and M. E. Gershenson, Appl. Phys. Lett. 87, 093505 (2005).
http://dx.doi.org/10.1063/1.2035323
http://aip.metastore.ingenta.com/content/aip/journal/apl/96/18/10.1063/1.3421539
Loading
/content/aip/journal/apl/96/18/10.1063/1.3421539
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/96/18/10.1063/1.3421539
2010-05-05
2014-12-18

Abstract

Excitons in rubrene single crystals dissociate into free charge carriers via two mechanisms whose relative importance depends on the illumination wavelength through the optical penetration depth into the crystal. The first mechanism is defect-induced dissociation in less than 10 ns after photoexcitation. For low photoexcitation densities, about 10% of the excitons that survive radiative recombination dissociate through this channel. The second mechanism, affecting the remaining 90% of the excitons, involves a previously reported state localized close to the surface of the crystal that leads to a delayed release of photocarriers a fraction of a millisecond after photoexcitation.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/96/18/1.3421539.html;jsessionid=5p5ro1sf6vaij.x-aip-live-02?itemId=/content/aip/journal/apl/96/18/10.1063/1.3421539&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Two mechanisms of exciton dissociation in rubrene single crystals
http://aip.metastore.ingenta.com/content/aip/journal/apl/96/18/10.1063/1.3421539
10.1063/1.3421539
SEARCH_EXPAND_ITEM