1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/96/19/10.1063/1.3428359
1.
1.I. Gur, N. A. Former, M. L. Geier, and A. P. Alivisatos, Science 310, 462 (2005).
http://dx.doi.org/10.1126/science.1117908
2.
2.Y. Kanemitsu, S. Okamoto, M. Otobe, and S. Oda, Phys. Rev. B 55, R7375 (1997).
http://dx.doi.org/10.1103/PhysRevB.55.R7375
3.
3.D. Jurbergs, E. Rogojina, L. Mangolini, and U. Kortshagen, Appl. Phys. Lett. 88, 233116 (2006).
http://dx.doi.org/10.1063/1.2210788
4.
4.N. C. Greenham, X. Peng, and A. P. Alivisatos, Phys. Rev. B 54, 17628 (1996).
http://dx.doi.org/10.1103/PhysRevB.54.17628
5.
5.S. A. McDonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina, and E. H. Sargent, Nat. Mater. 4, 138 (2005).
http://dx.doi.org/10.1038/nmat1299
6.
6.S. C. Erwin, L. Zu, M. I. Haftel, A. L. Efros, T. A. Kennedy, and D. J. Norris, Nature (London) 436, 91 (2005).
http://dx.doi.org/10.1038/nature03832
7.
7.S. Niesar, R. Dietmueller, H. Nesswetter, H. Wiggers, and M. Stutzmann, Phys. Status Solidi A 206, 2775 (2009).
8.
8.C. -Y. Liu, Z. C. Holman, and U. R. Kortshagen, Nano Lett. 9, 449 (2009).
http://dx.doi.org/10.1021/nl8034338
9.
9.R. Lechner, H. Wiggers, A. Ebbers, J. Steiger, M. S. Brandt, and M. Stutzmann, Phys. Status Solidi (RRL) 1, 262 (2007).
http://dx.doi.org/10.1002/pssr.200701198
10.
10.R. Dietmueller, A. R. Stegner, R. Lechner, S. Niesar, R. R. Pereira, M. S. Brandt, A. Ebbers, M. Trocha, H. Wiggers, and M. Stutzmann, Appl. Phys. Lett. 94, 113301 (2009).
http://dx.doi.org/10.1063/1.3086299
11.
11.C. Meier, S. Luettjohann, V. G. Kravets, H. Nienhaus, A. Lorke, and H. Wiggers, Physica E 32, 155 (2006).
http://dx.doi.org/10.1016/j.physe.2005.12.030
12.
12.V. G. Kravets, C. Meier, D. Konjhodzic, A. Lorke, and H. Wiggers, J. Appl. Phys. 97, 084306 (2005).
http://dx.doi.org/10.1063/1.1866475
13.
13.A. R. Stegner, R. N. Pereira, R. Lechner, K. Klein, H. Wiggers, M. Stutzmann, and M. S. Brandt, Phys. Rev. B 80, 165326 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.165326
14.
14.X. D. Pi, R. Gresback, R. W. Liptak, S. A. Campbell, and U. Kortshagen, Appl. Phys. Lett. 92, 123102 (2008).
http://dx.doi.org/10.1063/1.2897291
15.
15.A. Stesmans, M. Jivanescu, S. Godefroo, and M. Zacharias, Appl. Phys. Lett. 93, 023123 (2008).
http://dx.doi.org/10.1063/1.2952276
16.
16.R. Lechner, A. R. Stegner, R. N. Pereira, R. Dietmueller, M. S. Brandt, A. Ebbers, M. Trocha, H. Wiggers, and M. Stutzmann, J. Appl. Phys. 104, 053701 (2008).
http://dx.doi.org/10.1063/1.2973399
17.
17.J. Knipping, H. Wiggers, B. Rellinghaus, P. Roth, D. Konjhodzic, and C. Meier, J. Nanosci. Nanotechnol. 4, 1039 (2004).
http://dx.doi.org/10.1166/jnn.2004.149
18.
18.B. Giesen, H. Wiggers, A. Kowalik, and P. Roth, J. Nanopart. Res. 7, 29 (2005).
http://dx.doi.org/10.1007/s11051-005-0316-z
19.
19.A. Gupta, M. T. Swihart, and H. Wiggers, Adv. Funct. Mater. 19, 696 (2009).
http://dx.doi.org/10.1002/adfm.200801548
20.
20.E. H. Poindexter, P. J. Caplan, B. E. Deal, and R. R. Razouk, J. Appl. Phys. 52, 879 (1981).
http://dx.doi.org/10.1063/1.328771
21.
21.A. Stesmans and V. V. Afanas’ev, J. Appl. Phys. 83, 2449 (1998).
http://dx.doi.org/10.1063/1.367005
22.
22.M. Stutzmann and D. K. Biegelsen, Phys. Rev. B 40, 9834 (1989).
http://dx.doi.org/10.1103/PhysRevB.40.9834
23.
23.P. Gupta, V. L. Colvin, and S. M. George, Phys. Rev. B 37, 8234 (1988).
http://dx.doi.org/10.1103/PhysRevB.37.8234
24.
24.G. W. Trucks, K. Raghavachari, G. S. Higashi, and Y. J. Chabal, Phys. Rev. Lett. 65, 504 (1990).
http://dx.doi.org/10.1103/PhysRevLett.65.504
25.
25.W. B. Jackson and N. M. Am, Phys. Rev. B 25, 5559 (1982).
http://dx.doi.org/10.1103/PhysRevB.25.5559
26.
26.S. Veprek, Z. Ipbal, R. O. Kuehne, P. Capezzuto, F. -A. Sarott, and J. K. Gimzewski, J. Phys. C 16, 6241 (1983).
http://dx.doi.org/10.1088/0022-3719/16/32/015
27.
27.C. Herring and N. M. Johnson, in Semiconductors and Semimetals, edited by R. K. Willardson and A. C. Beer (Academic, London, 1991), Vol. 5, p. 225.
28.
28.J. D. Holbech, B. B. Nielsen, R. Jones, P. Sitch, and S. Öberg, Phys. Rev. Lett. 71, 875 (1993).
http://dx.doi.org/10.1103/PhysRevLett.71.875
http://aip.metastore.ingenta.com/content/aip/journal/apl/96/19/10.1063/1.3428359
Loading
/content/aip/journal/apl/96/19/10.1063/1.3428359
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/96/19/10.1063/1.3428359
2010-05-13
2015-07-30

Abstract

Using electron paramagnetic resonance, we find that vacuum annealing at leads to a significant reduction in the silicon dangling bond (Si-db) defect density in silicon nanoparticles (Si-NPs). The best improvement of the Si-db density by a factor of 10 is obtained when the vacuum annealing is combined with an etching step in hydrofluoric acid (HF), whereas HF etching alone only removes the Si-dbs at the interface. The reduction in the Si-db defect density is confirmed by photothermal deflection spectroscopy and photoconductivity measurements on thin Si-NPs films.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/96/19/1.3428359.html;jsessionid=1u3ibg1f62kb1.x-aip-live-03?itemId=/content/aip/journal/apl/96/19/10.1063/1.3428359&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address

Oops! This section does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Defect reduction in silicon nanoparticles by low-temperature vacuum annealing
http://aip.metastore.ingenta.com/content/aip/journal/apl/96/19/10.1063/1.3428359
10.1063/1.3428359
SEARCH_EXPAND_ITEM