1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Electrical instability of polymer thin-film transistors using contact film transfer methods
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/96/24/10.1063/1.3454242
1.
1.Z. Bao and J. Locklin, Organic Field-Effect Transistors (CRC, Boca Raton, 2007), p. 616.
2.
2.Z. Bao, A. Dodabalapur, and A. J. Lovinger, Appl. Phys. Lett. 69, 4108 (1996).
http://dx.doi.org/10.1063/1.117834
3.
3.H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, and D. M. de Leeuw, Nature (London) 401, 685 (1999).
http://dx.doi.org/10.1038/44359
4.
4.H. Sirringhaus, Adv. Mater. (Weinheim, Ger.) 17, 2411 (2005).
http://dx.doi.org/10.1002/adma.200501152
5.
5.I. McCulloch, M. Heeney, M. L. Chabinyc, D. DeLongchamp, R. J. Kline, M. Coelle, W. Duffy, D. Fischer, D. Gundlach, B. Hamadani, R. Hamilton, L. Richter, A. Salleo, M. Shkunov, D. Sporrowe, S. Tierney, and W. Zhong, Adv. Mater. (Weinheim, Ger.) 21, 1091 (2009).
http://dx.doi.org/10.1002/adma.200801650
6.
6.A. Salleo, F. Endicott, and R. A. Street, Appl. Phys. Lett. 86, 263505 (2005).
http://dx.doi.org/10.1063/1.1968437
7.
7.A. Salleo and R. A. Street, J. Appl. Phys. 94, 471 (2003).
http://dx.doi.org/10.1063/1.1581352
8.
8.A. Salleo and R. A. Street, Phys. Rev. B 70, 235324 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.235324
9.
9.R. A. Street, A. Salleo, and M. L. Chabinyc, Phys. Rev. B 68, 085316 (2003).
http://dx.doi.org/10.1103/PhysRevB.68.085316
10.
10.S. G. J. Mathijssen, M. Colle, H. Gomes, E. C. P. Smits, B. de Boer, I. McCulloch, P. A. Bobbert, and D. M. de Leeuw, Adv. Mater. (Weinheim, Ger.) 19, 2785 (2007).
http://dx.doi.org/10.1002/adma.200602798
11.
11.S. G. J. Mathijssen, M. Kemerink, A. Sharma, M. Coelle, P. A. Bobbert, R. A. J. Janssen, and D. M. de Leeuw, Adv. Mater. (Weinheim, Ger.) 20, 975 (2008).
http://dx.doi.org/10.1002/adma.200702688
12.
12.D. H. Kim, B. L. Lee, H. Moon, H. M. Kang, E. J. Jeong, J. I. Park, K. M. Han, S. Lee, B. W. Yoo, B. W. Koo, J. Y. Kim, W. H. Lee, K. Cho, H. A. Becerril, and Z. Bao, J. Am. Chem. Soc. 131, 6124 (2009).
http://dx.doi.org/10.1021/ja8095569
13.
13.H. Sirringhaus, Adv. Mater. (Weinheim, Ger.) 21, 3859 (2009).
http://dx.doi.org/10.1002/adma.200901136
14.
14.M. Egginger, S. Bauer, R. Schwodiauer, H. Neugebauer, and N. S. Sariciftci, Monatsch. Chem. 140, 735 (2009).
http://dx.doi.org/10.1007/s00706-009-0149-z
15.
15.D. Knipp, R. A. Street, A. Volkel, and J. Ho, J. Appl. Phys. 93, 347 (2003).
http://dx.doi.org/10.1063/1.1525068
16.
16.Q. Wei, K. Tajima, and K. Hashimoto, ACS Appl. Mater. Interfaces 1, 1865 (2009).
http://dx.doi.org/10.1021/am9004545
17.
17.Q. S. Wei, S. Miyanishi, K. Tajima, and K. Hashimoto, ACS Appl. Mater. Interfaces 1, 2660 (2009).
http://dx.doi.org/10.1021/am9005572
18.
18.X. T. Hao, T. Hosokai, N. Mitsuo, S. Kera, K. K. Okudaira, K. Mase, and N. Ueno, J. Phys. Chem. B 111, 10365 (2007).
http://dx.doi.org/10.1021/jp0732209
19.
19.A. Salleo, T. W. Chen, A. R. Volkel, Y. Wu, P. Liu, B. S. Ong, and R. A. Street, Phys. Rev. B 70, 115311 (2004).
http://dx.doi.org/10.1103/PhysRevB.70.115311
20.
20.J. F. Chang, H. Sirringhaus, M. Giles, M. Heeney, and I. McCulloch, Phys. Rev. B 76, 205204 (2007).
http://dx.doi.org/10.1103/PhysRevB.76.205204
21.
21.R. A. Street, J. E. Northrup, and A. Salleo, Phys. Rev. B 71, 165202 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.165202
http://aip.metastore.ingenta.com/content/aip/journal/apl/96/24/10.1063/1.3454242
Loading
/content/aip/journal/apl/96/24/10.1063/1.3454242
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/96/24/10.1063/1.3454242
2010-06-14
2014-11-26

Abstract

The effects of molecular packing on electrical instability in poly(3-hexylthiophene) thin-film transistors were investigated by comparing two devices prepared using the same polymer solution and dielectric layer but by different processes. One device, which was prepared by a contact film transfer method by Wei et al. [ACS Appl. Mater. Interfaces1, 2660 (2009)], utilized the structure formed at the air/solution interface and exhibited high performance, the absence of hysteresis and excellent electrical stability under prolonged continuous bias stress, in contrast to the other device prepared by conventional spin coating, which utilized structures formed at the solution/dielectric interface. Neither thermal nor solvent annealing was applied to control the molecular packing, and thus these results indicate that the highly ordered molecular packing formed at the air/solution interface can simultaneously contribute to enhanced electrical stability.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/96/24/1.3454242.html;jsessionid=3eu5mndjb9si.x-aip-live-06?itemId=/content/aip/journal/apl/96/24/10.1063/1.3454242&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Electrical instability of polymer thin-film transistors using contact film transfer methods
http://aip.metastore.ingenta.com/content/aip/journal/apl/96/24/10.1063/1.3454242
10.1063/1.3454242
SEARCH_EXPAND_ITEM