1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Intense photoluminescence from pentacene monolayers
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/96/26/10.1063/1.3458816
1.
1.S. F. Nelson, Y. -Y. Lin, D. J. Gundlach, and T. N. Jackson, Appl. Phys. Lett. 72, 1854 (1998).
http://dx.doi.org/10.1063/1.121205
2.
2.S. R. Forrest, Nature (London) 428, 911 (2004).
http://dx.doi.org/10.1038/nature02498
3.
3.T. Dobbertin, M. Kroeger, D. Heithecker, D. Schneider, D. Metzdorf, H. Neuner, E. Becker, H. -H. Johannes, and W. Kowalsky, Appl. Phys. Lett. 82, 284 (2003).
http://dx.doi.org/10.1063/1.1535743
4.
4.F. Dinelli, R. Capelli, M. A. Loi, M. Murgia, M. Muccini, A. Facchetti, and T. J. Marks, Adv. Mater. 18, 1416 (2006).
http://dx.doi.org/10.1002/adma.200502164
5.
5.J. Lee, P. Jadhav, and M. A. Baldo, Appl. Phys. Lett. 95, 033301 (2009).
http://dx.doi.org/10.1063/1.3182787
6.
6.A. C. Mayer, M. T. Lloyd, D. J. Herman, T. G. Kasen, and G. G. Malliaras, Appl. Phys. Lett. 85, 6272 (2004).
http://dx.doi.org/10.1063/1.1842358
7.
7.P. Sullivan and T. S. Jones, Org. Electron. 9, 656 (2008).
http://dx.doi.org/10.1016/j.orgel.2008.04.008
8.
8.S. Karak, V. S. Reddy, S. K. Ray, and A. Dhar, Org. Electron. 10, 1006 (2009).
http://dx.doi.org/10.1016/j.orgel.2009.04.006
9.
9.A. Dodabalapur, L. Torsi, and H. E. Katz, Science 268, 270 (1995).
http://dx.doi.org/10.1126/science.268.5208.270
10.
10.R. Ruiz, A. Papadimitratos, A. C. Mayer, and G. G. Malliaras, Adv. Mater. 17, 1795 (2005).
http://dx.doi.org/10.1002/adma.200402077
11.
11.C. Kim, A. Facchetti, and T. J. Marks, Science 318, 76 (2007).
http://dx.doi.org/10.1126/science.1146458
12.
12.T. Siegrist, C. Kloc, J. H. Schön, B. Batlogg, R. C. Haddon, S. Berg, and G. A. Thomas, Angew. Chem., Int. Ed. 40, 1732 (2001).
http://dx.doi.org/10.1002/1521-3773(20010504)40:9<1732::AID-ANIE17320>3.0.CO;2-7
13.
13.C. C. Mattheus, G. A. de Wijs, R. A. de Groot, and T. T. M. Palstra, J. Am. Chem. Soc. 125, 6323 (2003).
http://dx.doi.org/10.1021/ja0211499
14.
14.M. L. Tiago, J. E. Northrup, and S. G. Louie, Phys. Rev. B 67, 115212 (2003).
http://dx.doi.org/10.1103/PhysRevB.67.115212
15.
15.R. G. Della Valle, A. Brillante, L. Farina, E. Venuti, M. Masinoand, and A. Girlando, Mol. Cryst. Liq. Cryst. 416, 145 (2004).
http://dx.doi.org/10.1080/15421400490478542
16.
16.H. Klauk, M. Halik, U. Zschieschang, G. Schmid, W. Radlik, and W. Weber, J. Appl. Phys. 92, 5259 (2002).
http://dx.doi.org/10.1063/1.1511826
17.
17.T. W. Kelley, D. V. Muyres, P. F. Baude, T. P. Smith, and T. D. Jones, Mater. Res. Soc. Symp. Proc. 771, L65 (2003).
18.
18.J. Veres, S. D. Ogier, S. W. Leeming, D. C. Cupertino, and S. M. Khaffaf, Adv. Funct. Mater. 13, 199 (2003).
http://dx.doi.org/10.1002/adfm.200390030
19.
19.C. Goldmann, D. J. Gundlach, and B. Batlogg, Appl. Phys. Lett. 88, 063501 (2006).
http://dx.doi.org/10.1063/1.2171479
20.
20.P. R. Ribič, V. Kalihari, C. D. Frisbie, and G. Bratina, Phys. Rev. B 80, 115307 (2009).
http://dx.doi.org/10.1103/PhysRevB.80.115307
21.
21.R. He, N. G. Tassi, G. B. Blanchet, and A. Pinczuk, Appl. Phys. Lett. 94, 223310 (2009).
http://dx.doi.org/10.1063/1.3151867
22.
22.R. He, N. G. Tassi, G. B. Blanchet, and A. Pinczuk, Appl. Phys. Lett. 87, 103107 (2005).
http://dx.doi.org/10.1063/1.2040011
23.
23.D. V. Lang, X. Chi, T. Siegrist, A. M. Sergent, and A. P. Ramirez, Phys. Rev. Lett. 93, 086802 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.086802
24.
24.S. E. Fritz, S. M. Martin, C. D. Frisbie, M. D. Ward, and M. F. Toney, J. Am. Chem. Soc. 126, 4084 (2004).
http://dx.doi.org/10.1021/ja049726b
25.
25.S. Seo and P. G. Evans, J. Appl. Phys. 106, 103521 (2009).
http://dx.doi.org/10.1063/1.3262618
26.
26.B. Park, P. Paoprasert, P. Gopalan, T. F. Kuech, and P. G. Evans, Appl. Phys. Lett. 94, 073302 (2009).
http://dx.doi.org/10.1063/1.3080667
27.
27.R. He, X. Chi, A. Pinczuk, D. V. Lang, and A. P. Ramirez, Appl. Phys. Lett. 87, 211117 (2005).
http://dx.doi.org/10.1063/1.2135494
28.
28.R. Schuster, M. Knupfer, and H. Berger, Phys. Rev. Lett. 98, 037402 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.037402
29.
29.R. Ruiz, A. C. Mayer, G. G. Malliaras, B. Nickel, G. Scoles, A. Kazimirov, H. Kim, R. L. Headrick, and Z. Islam, Appl. Phys. Lett. 85, 4926 (2004).
http://dx.doi.org/10.1063/1.1826229
30.
30.J. H. Kang, D. da Silva Filho, J. -L. Bredas, and X. -Y. Zhu, Appl. Phys. Lett. 86, 152115 (2005).
http://dx.doi.org/10.1063/1.1900944
31.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/96/26/10.1063/1.3458816
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) Left: schematic drawing of the configuration of a pentacene film grown on PAMS. The drawing is not to scale. Right: AFM image of a pentacene submonolayer film with 70% coverage (0.7 ML). (b) Photoluminescence spectra from pentacene films with different values of . The vertical arrows mark the positions of FE bands.

Image of FIG. 2.

Click to view

FIG. 2.

Integrated intensity of FE band as a function of layering. The solid curve is a fit of the data to the equation shown as a legend. The circled region is expanded in the inset. of single crystal of pentacene is indicated by an arrow.

Image of FIG. 3.

Click to view

FIG. 3.

FE energy and bandwidth as a function of the number of monolayers. The arrows label the position and width of FE band in the single crystal. The solid lines are guides to the eye. The -spacings are measured by XRD at room temperature. (For these values are expected to decrease by 1% to 2%.) For the case of 1 ML, the spacing refers to the thickness of the first layer measured by AFM.

Loading

Article metrics loading...

/content/aip/journal/apl/96/26/10.1063/1.3458816
2010-06-30
2014-04-23

Abstract

Sharp and intense excitonic photoluminescence is observed at low temperatures in highly uniform pentacene monolayers deposited on a compliant polymeric substrate. The free exciton (FE) emission displays characteristic intensity that grows quadratically with the number of monolayers. The energy of the FE band redshifts with increasing revealing impact of molecular overlap on the FE state.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/96/26/1.3458816.html;jsessionid=dbf2r23j506fr.x-aip-live-03?itemId=/content/aip/journal/apl/96/26/10.1063/1.3458816&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Intense photoluminescence from pentacene monolayers
http://aip.metastore.ingenta.com/content/aip/journal/apl/96/26/10.1063/1.3458816
10.1063/1.3458816
SEARCH_EXPAND_ITEM