1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Understanding the role of tunneling barriers in organic spin valves by hard x-ray photoelectron spectroscopy
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/96/4/10.1063/1.3285179
1.
1.W. J. M. Naber, S. Faez, and W. G. van der Wiel, J. Phys. D: Appl. Phys. 40, R205 (2007).
http://dx.doi.org/10.1088/0022-3727/40/12/R01
2.
2.V. Dediu, M. Murgia, F. C. Matacotta, C. Taliani, and S. Barbanera, Solid State Commun. 122, 181 (2002).
http://dx.doi.org/10.1016/S0038-1098(02)00090-X
3.
3.Z. H. Xiong, D. Wu, Z. V. Vardeny, and J. Shi, Nature (London) 427, 821 (2004).
http://dx.doi.org/10.1038/nature02325
4.
4.H. Vinzelberg, J. Schumann, D. Elefant, R. B. Gangineni, J. Thomas, and B. Büchner, J. Appl. Phys. 103, 093720 (2008).
http://dx.doi.org/10.1063/1.2924435
5.
5.V. Dediu, L. E. Hueso, I. Bergenti, A. Riminucci, F. Borgatti, P. Graziosi, C. Newby, F. Casoli, M. P. De Jong, C. Taliani, and Y. Zhan, Phys. Rev. B 78, 115203 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.115203
6.
6.Y. Liu, S. M. Watson, T. Lee, J. M. Gorham, H. E. Katz, J. A. Borchers, H. D. Fairbrother, and D. H. Reich, Phys. Rev. B 79, 075312 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.075312
7.
7.W. Xu, J. Brauer, G. Szulczewski, M. S. Driver, and A. N. Caruso, Appl. Phys. Lett. 94, 233302 (2009).
http://dx.doi.org/10.1063/1.3148665
8.
8.G. Panaccione, F. Offi, M. Sacchi, and P. Torelli, C. R. Phys. 9, 524 (2008).
http://dx.doi.org/10.1016/j.crhy.2007.04.005
9.
9.E. Holmström, W. Olovsson, I. A. Abrikosov, A. M. N. Niklasson, and B. Johansson, Phys. Rev. Lett. 97, 266106 (2006).
http://dx.doi.org/10.1103/PhysRevLett.97.266106
10.
10.C. Dallera, F. Fracassi, L. Braicovich, G. Scarel, C. Wiemer, M. Fanciulli, G. Pavia, and B. C. C. Cowie, Appl. Phys. Lett. 89, 183521 (2006).
http://dx.doi.org/10.1063/1.2374843
11.
11.Y. Q. Zhan, X. J. Liu, E. Carlegrim, F. H. Li, I. Bergenti, P. Graziosi, V. Dediu, and M. Fahlman, Appl. Phys. Lett. 94, 053301 (2009).
http://dx.doi.org/10.1063/1.3078274
12.
12.P. Torelli, M. Sacchi, G. Cautero, M. Cautero, B. Krastanov, P. Lacovig, P. Pittana, R. Sergo, R. Tommasini, A. Fondacaro, F. Offi, G. Paolicelli, G. Stefani, M. Grioni, R. Verbeni, G. Monaco, and G. Panaccione, Rev. Sci. Instrum. 76, 023909 (2005).
http://dx.doi.org/10.1063/1.1852323
13.
13.TEM was performed on an FEI Technai F20 transmission electron microscope operated at 200 kV and equipped with a field emission gun. Cross-section samples were prepared by a solvent-free process using an FEI Nova 200 Dualbeam Focused Ion Beam system, which was also used to deposit a thin Pt layer onto the sample prior to milling and lift-out.
14.
14.I. Bergenti, A. Riminucci, E. Arisi, M. Murgia, M. Cavallini, M. Solzi, F. Casoli, and V. Dediu, J. Magn. Magn. Mater. 316, e987 (2007).
http://dx.doi.org/10.1016/j.jmmm.2007.03.165
15.
15.T. -W. Pi, T. C. Yu, C. -P. Ouyang, J. -F. Wen, and H. L. Hsu, Phys. Rev. B 71, 205310 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.205310
16.
16.T. D. Thomas, E. Kukk, R. Sankari, H. Fukuzawa, G. Prümper, K. Ueda, R. Püttner, J. Harries, Y. Tamenori, T. Tanaka, M. Hoshino, and H. Tanaka, J. Chem. Phys. 128, 144311 (2008).
http://dx.doi.org/10.1063/1.2897756
17.
17.T. -W. Pi, H. -H. Lee, H. -H. Lin, and J. Hwang, J. Appl. Phys. 101, 043704 (2007).
http://dx.doi.org/10.1063/1.2511841
18.
18.V. -E. Choong, M. G. Mason, C. W. Tang, and Y. Gao, Appl. Phys. Lett. 72, 2689 (1998).
http://dx.doi.org/10.1063/1.121100
19.
19.T. -W. Pi, C. -H. Liu, and J. Hwang, J. Appl. Phys. 99, 123712 (2006).
http://dx.doi.org/10.1063/1.2205661
20.
20.A. Curioni, W. Andreoni, R. Treusch, F. J. Himpsel, E. Haskal, P. Seider, C. Heske, S. Kakar, T. van Buuren, and L. J. Terminello, Appl. Phys. Lett. 72, 1575 (1998).
http://dx.doi.org/10.1063/1.121119
21.
21.T. S. Santos, J. S. Lee, P. Migdal, I. C. Lekshmi, B. Satpati, and J. S. Moodera, Phys. Rev. Lett. 98, 016601 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.016601
http://aip.metastore.ingenta.com/content/aip/journal/apl/96/4/10.1063/1.3285179
Loading
/content/aip/journal/apl/96/4/10.1063/1.3285179
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/96/4/10.1063/1.3285179
2010-01-26
2014-10-24

Abstract

We present an ex situ, nondestructive chemical characterization of deeply buried organic-inorganic interfaces using hard x-ray photoelectron spectroscopy. and interfaces were studied in order to determine the role of a thin (1–2 nm) interdiffusion barrier in organic spin valves. Interfacial , 15 nm below the surface, exhibits strong sensitivity to the electronic structure of the interfacial region and to the presence of the . In addition to reducing interdiffusion, we find that the barrier prevents charge donation from the Co to the interfacial , thus preventing the formation of anions within the interface region.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/96/4/1.3285179.html;jsessionid=51no8fj2reo89.x-aip-live-06?itemId=/content/aip/journal/apl/96/4/10.1063/1.3285179&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Understanding the role of tunneling barriers in organic spin valves by hard x-ray photoelectron spectroscopy
http://aip.metastore.ingenta.com/content/aip/journal/apl/96/4/10.1063/1.3285179
10.1063/1.3285179
SEARCH_EXPAND_ITEM