1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Carrier transport mechanisms of organic bistable devices fabricated utilizing colloidal ZnO quantum dot-polymethylmethacrylate polymer nanocomposites
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/97/1/10.1063/1.3454774
1.
1.L. P. Ma, J. Liu, and Y. Yang, Appl. Phys. Lett. 80, 2997 (2002).
http://dx.doi.org/10.1063/1.1473234
2.
2.Th. B. Singh, N. Marjanović, G. J. Matt, N. S. Sariciftci, R. Schwödiauer, and S. Bauer, Appl. Phys. Lett. 85, 5409 (2004).
http://dx.doi.org/10.1063/1.1828236
3.
3.J. H. Jung, J. Y. Jin, I. Lee, T. W. Kim, H. G. Roh, and Y. -H. Kim, Appl. Phys. Lett. 88, 112107 (2006).
http://dx.doi.org/10.1063/1.2185615
4.
4.W. L. Leong, P. S. Lee, S. G. Mhaisalkar, T. P. Chen, and A. Dodabalapur, Appl. Phys. Lett. 90, 042906 (2007).
http://dx.doi.org/10.1063/1.2435598
5.
5.S. Sahu, S. K. Majee, and A. J. Pal, Appl. Phys. Lett. 91, 143108 (2007).
http://dx.doi.org/10.1063/1.2793617
6.
6.R. J. Warburton, C. Schäflein, D. Haft, F. Bickel, A. Lorke, K. Karrai, J. M. Garcia, W. Schoenfeld, and P. M. Petroff, Nature (London) 405, 926 (2000).
http://dx.doi.org/10.1038/35016030
7.
7.F. Huguenin, D. S. dos Santos, Jr., A. Bassi, F. C. Nart, and O. N. Oliveira, Jr., Adv. Funct. Mater. 14, 985 (2004).
http://dx.doi.org/10.1002/adfm.200305077
8.
8.A. K. Cuentas-Gallegos, M. Lica-Cantú, N. Casañ-Pastor, and P. Gómez-Romero, Adv. Funct. Mater. 15, 1125 (2005).
http://dx.doi.org/10.1002/adfm.200400326
9.
9.J. H. Kim, J. Y. Jin, J. H. Jung, I. Lee, T. W. Kim, S. K. Lim, C. S. Yoon, and Y. -H. Kim, Appl. Phys. Lett. 86, 032904 (2005).
http://dx.doi.org/10.1063/1.1850194
10.
10.F. Li, D. -I. Son, J. -H. Ham, G. -J. Kim, J. H. Jung, and T. W. Kim, Appl. Phys. Lett. 91, 162109 (2007).
http://dx.doi.org/10.1063/1.2801357
11.
11. Liping, J. Liu, S. Pyo, Q. Xu, and Y. Yang, Mol. Cryst. Liq. Cryst. 378, 185 (2002).
http://dx.doi.org/10.1080/713738589
12.
12.T. Tsujioka and H. Kondo, Appl. Phys. Lett. 83, 937 (2003).
http://dx.doi.org/10.1063/1.1597966
13.
13.L. D. Bozano, B. W. Kean, V. R. Deline, J. R. Salem, and J. C. Scott, Appl. Phys. Lett. 84, 607 (2004).
http://dx.doi.org/10.1063/1.1643547
14.
14.S. Paul, A. Kanwal, and M. Chhowalla, Nanotechnology 17, 145 (2006).
http://dx.doi.org/10.1088/0957-4484/17/1/023
15.
15.J. H. Jung, J. -H. Kim, T. W. Kim, M. S. Song, Y. -H. Kim, and S. Jin, Appl. Phys. Lett. 89, 122110 (2006).
http://dx.doi.org/10.1063/1.2355465
16.
16.L. P. Ma, J. Liu, S. M. Pyo, and Y. Yang, Appl. Phys. Lett. 80, 362 (2002).
http://dx.doi.org/10.1063/1.1436274
17.
17.L. P. Ma, S. M. Pyo, J. Y. Ouyang, Q. Y. Xu, and Y. Yang, Appl. Phys. Lett. 82, 1419 (2003).
http://dx.doi.org/10.1063/1.1556555
18.
18.J. H. Wu, L. P. Ma, and Y. Yang, Phys. Rev. B 69, 115321 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.115321
19.
19.R. J. Tseng, J. Huang, J. Ouyang, R. B. Kaner, and Y. Yang, Nano Lett. 5, 1077 (2005).
http://dx.doi.org/10.1021/nl050587l
20.
20.A. Prakash, J. Y. Ouyang, J. L. Lin, and Y. Yang, J. Appl. Phys. 100, 054309 (2006).
http://dx.doi.org/10.1063/1.2337252
21.
21.D. I. Son, C. H. You, W. T. Kim, J. H. Jung, and T. W. Kim, Appl. Phys. Lett. 94, 132103 (2009).
http://dx.doi.org/10.1063/1.3111445
22.
22.M. A. Lampert and P. Mark, Current Injection in Solids (Academic, New York, 1970).
23.
23.S. M. Sze, Physics of Semiconductor Devices, 2nd ed. (Wiley, New York, 1981).
24.
24.K. C. Kao and W. Hwang, in Electrical Transport in Solids, International Series in The Science of Solid State Vol. 14, edited by B. R. Pamplin (Pergamon, New York, 1981), pp. 64144.
25.
25.J. M. Lin, H. Y. Lin, C. L. Cheng, and Y. Fang, Nanotechnology 17, 4391 (2006).
http://dx.doi.org/10.1088/0957-4484/17/17/017
26.
26.J. A. Hagen, W. Li, A. J. Steckl, and J. G. Grote, Appl. Phys. Lett. 88, 171109 (2006).
http://dx.doi.org/10.1063/1.2197973
27.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/97/1/10.1063/1.3454774
Loading
/content/aip/journal/apl/97/1/10.1063/1.3454774
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/97/1/10.1063/1.3454774
2010-07-07
2014-08-23

Abstract

Organic bistable devices (OBDs) fabricated utilizing ZnOquantum dots(QDs) embedded in a poly(methyl methacrylate) (PMMA) layer were fabricated by using a spin-coating technique. Transmission electron microscopy images revealed that 5-nm-diameter ZnOQDs were formed inside the PMMA polymer layer. Current-voltage (I-V) measurements on Al/ZnO QDs embedded in PMMA layer/indium-tin-oxide devices at 300 K showed electrical bistability. The maximum ON/OFF ratio of the current bistability for the OBDs was as large as . Carrier transport mechanisms for the OBDs are described by using several models to fit the experimental I-V data.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/97/1/1.3454774.html;jsessionid=1oe9p4vx4vqt.x-aip-live-02?itemId=/content/aip/journal/apl/97/1/10.1063/1.3454774&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Carrier transport mechanisms of organic bistable devices fabricated utilizing colloidal ZnO quantum dot-polymethylmethacrylate polymer nanocomposites
http://aip.metastore.ingenta.com/content/aip/journal/apl/97/1/10.1063/1.3454774
10.1063/1.3454774
SEARCH_EXPAND_ITEM