1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Electron transport properties of InAs ultrathin films obtained by epitaxial lift-off and van der Waals bonding on flexible substrates
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/97/1/10.1063/1.3459137
1.
1.M. Takushima, Y. Kajikawa, Y. Kuya, M. Shiba, and K. Ohnishi, Jpn. J. Appl. Phys. 47, 1469 (2008).
http://dx.doi.org/10.1143/JJAP.47.1469
2.
2.W. Chen, P. Chen, J. Pulsifer, T. Alford, T. Kuech, and S. Lau, Appl. Phys. Lett. 92, 212109 (2008).
http://dx.doi.org/10.1063/1.2937409
3.
3.M. Konagai, M. Sugimoto, and K. Takahashi, J. Cryst. Growth 45, 277 (1978).
http://dx.doi.org/10.1016/0022-0248(78)90449-9
4.
4.E. Yablonovitch, T. Gmitter, J. P. Harbison, and R. Bhat, Appl. Phys. Lett. 51, 2222 (1987).
http://dx.doi.org/10.1063/1.98946
5.
5.J. Fastenau, E. Özbay, G. Tuttle, and F. Laabs, J. Electron. Mater. 24, 757 (1995).
http://dx.doi.org/10.1007/BF02659736
6.
6.Y. Jeong, M. Shindo, M. Akabori, and T. Suzuki, Appl. Phys. Express 1, 021201 (2008).
http://dx.doi.org/10.1143/APEX.1.021201
7.
7.J. S. Speck, M. A. Brewer, G. Beltz, A. E. Romanov, and W. Pompe, J. Appl. Phys. 80, 3808 (1996).
http://dx.doi.org/10.1063/1.363334
8.
8.Y. Jeong, H. Choi, and T. Suzuki, J. Cryst. Growth 301–302, 235 (2007).
http://dx.doi.org/10.1016/j.jcrysgro.2006.11.084
9.
9.C. A. Mead and W. G. Spitzer, Phys. Rev. Lett. 10, 471 (1963).
http://dx.doi.org/10.1103/PhysRevLett.10.471
10.
10.L. Ö. Olsson, C. B. M. Andersson, M. C. Håkansson, J. Kanski, L. Ilver, and U. O. Karlsson, Phys. Rev. Lett. 76, 3626 (1996).
http://dx.doi.org/10.1103/PhysRevLett.76.3626
11.
11.S. Kalem, J. -I. Chyi, H. Morkoç, R. Bean, and K. Zanio, Appl. Phys. Lett. 53, 1647 (1988).
http://dx.doi.org/10.1063/1.99938
12.
12.S. P. Watkins, C. A. Tran, R. Ares, and G. Soerensen, Appl. Phys. Lett. 66, 882 (1995).
http://dx.doi.org/10.1063/1.113419
13.
13.H. Yamaguchi, R. Dreyfus, Y. Hirayama, and S. Miyashita, Appl. Phys. Lett. 78, 2372 (2001).
http://dx.doi.org/10.1063/1.1365946
14.
14.N. Li, E. S. Harmon, J. Hyland, D. B. Salzman, T. P. Ma, Y. Xuan, and P. D. Ye, Appl. Phys. Lett. 92, 143507 (2008).
http://dx.doi.org/10.1063/1.2908926
15.
15.M. Yokoyama, T. Yasuda, H. Takagi, H. Yamada, N. Fukuhara, M. Hata, M. Sugiyama, Y. Nakano, M. Takenaka, and S. Takagi, Appl. Phys. Express 2, 124501 (2009).
http://dx.doi.org/10.1143/APEX.2.124501
16.
16.Q. Zhang, W. Zhao, and A. Seabaugh, IEEE Electron Device Lett. 27, 297 (2006).
http://dx.doi.org/10.1109/LED.2006.871855
17.
17.S. Mookerjea and S. Datta, Proceedings of the Device Research Conference (IEEE, New York, 2008), pp. 4748, DOI: 10.1109/DRC.2008.4800730.
18.
18.M. Luisier and G. Klimeck, IEEE Electron Device Lett. 30, 602 (2009).
http://dx.doi.org/10.1109/LED.2009.2020442
http://aip.metastore.ingenta.com/content/aip/journal/apl/97/1/10.1063/1.3459137
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) Heterostructure for ELO-VWB. (b) Reference structure.

Image of FIG. 2.

Click to view

FIG. 2.

The process of ELO and VWB on a flexible substrate (FS). Top and bottom sides are maintained in the normal VWB, while inverted in the inverted VWB.

Image of FIG. 3.

Click to view

FIG. 3.

Optical microscope images of (a) an isolated InAs Hall-bar device mesa on a flexible substrate (FS) and (b) a Hall-bar device on a FS with the resist patterning of the active region for recess etch-thinning.

Image of FIG. 4.

Click to view

FIG. 4.

Room-temperature electron mobilities (above) and sheet concentrations (below) for normal VWB on flexible substrate (FS), inverted VWB on FS, and reference on GaAs(001), as functions of InAs thickness.

Loading

Article metrics loading...

/content/aip/journal/apl/97/1/10.1063/1.3459137
2010-07-07
2014-04-18

Abstract

We investigated InAsultrathin films on flexible substrates. InAs layers grown on GaAs(001) are separated by epitaxial lift-off (ELO), followed by van der Waals bonding (VWB) on flexible substrates. We employed “normal” and “inverted” VWB; in the former, top and bottom sides are maintained during ELO and VWB, while inverted in the latter. From the InAs on flexible substrates, we fabricated Hall-bar devices with recess etch-thinning, using which electron transport properties depending on InAs layer thickness were characterized. For the inverted VWB, we observe very high electron mobilities of InAsultrathin films, such as for thickness and for . These carrier mobilities are highest not only for thin films on flexible substrates but also for InAsthin films; higher than those of InAsfilmsgrown on GaAs(111)A and membranes fabricated from them.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/97/1/1.3459137.html;jsessionid=31c15hjqtr72t.x-aip-live-01?itemId=/content/aip/journal/apl/97/1/10.1063/1.3459137&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Electron transport properties of InAs ultrathin films obtained by epitaxial lift-off and van der Waals bonding on flexible substrates
http://aip.metastore.ingenta.com/content/aip/journal/apl/97/1/10.1063/1.3459137
10.1063/1.3459137
SEARCH_EXPAND_ITEM