1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Transient electroluminescence dynamics in small molecular organic light-emitting diodes
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/97/11/10.1063/1.3481687
1.
1.J. Shinar and V. Savvate’ev, in Organic Light Emitting Devices: A Survey, edited by J. Shinar (Springer, Berlin, 2004), Chap. 1.
2.
2.J. Staudigel, M. Stößel, F. Steuber, and J. Simmerer, J. Appl. Phys. 86, 3895 (1999).
http://dx.doi.org/10.1063/1.371306
3.
3.E. Tutiš, M. N. Bussac, B. Masenelli, M. Carrard, and L. Zuppiroli, J. Appl. Phys. 89, 430 (2001).
http://dx.doi.org/10.1063/1.1327286
4.
4.E. Tutiš, D. Berner, and L. Zuppiroli, J. Appl. Phys. 93, 4594 (2003).
http://dx.doi.org/10.1063/1.1558208
5.
5.Y. H. Tak, J. Pommerehne, H. Vestweber, R. Sander, H. Bässler, and H. H. Hörhold, Appl. Phys. Lett. 69, 1291 (1996).
http://dx.doi.org/10.1063/1.117395
6.
6.J. Kalinowski, N. Camaioni, P. Di Marco, V. Fattori, and A. Martelli, Appl. Phys. Lett. 72, 513 (1998).
http://dx.doi.org/10.1063/1.120805
7.
7.J. M. Lupton, V. R. Nikitenko, I. D. W. Samuel, and H. Bässler, J. Appl. Phys. 89, 311 (2001).
http://dx.doi.org/10.1063/1.1331066
8.
8.V. Savvate’ev, J. H. Friedl, L. Zou, J. Shinar, K. Christensen, W. Oldham, L. J. Rothberg, Z. Chen-Esterlit, and R. Kopelman, Appl. Phys. Lett. 76, 1501 (2000).
http://dx.doi.org/10.1063/1.126076
9.
9.K. O. Cheon and J. Shinar, Appl. Phys. Lett. 84, 1201 (2004).
http://dx.doi.org/10.1063/1.1648138
10.
10.K. O. Cheon and J. Shinar, Phys. Rev. B 69, 201306 (2004).
http://dx.doi.org/10.1103/PhysRevB.69.201306
11.
11.D. Y. Kondakov, J. Appl. Phys. 102, 114504 (2007).
http://dx.doi.org/10.1063/1.2818362
12.
12.D. Y. Kondakov, J. Soc. Inf. Disp. 17, 137 (2009).
http://dx.doi.org/10.1889/JSID17.2.137
13.
13.The spike’s peak location can be affected by the time constant or delay time of the electronics. In the low- and room-temperature measurements the coaxial cables connecting the OLED to the electronics are and long, so the spikes peak at 200–300 ns and 100–200 ns, respectively.
14.
14.L. Zou, V. Savvate’ev, J. Booher, C. -H. Kim, and J. Shinar, Appl. Phys. Lett. 79, 2282 (2001).
http://dx.doi.org/10.1063/1.1399004
15.
15.The field-dependent electron mobility in and hole mobility in are , so if the potential drop across each of these -thick layers is , the transit time through them is .
16.
16.A. Mozumder, J. Chem. Phys. 48, 1659 (1968).
http://dx.doi.org/10.1063/1.1668892
17.
17.S. Karg, J. Steiger, and H. von Seggern, Synth. Met. 111–112, 277 (2000).
http://dx.doi.org/10.1016/S0379-6779(99)00445-2
18.
18.J. Kakalios, R. A. Street, and W. B. Jackson, Phys. Rev. Lett. 59, 1037 (1987).
http://dx.doi.org/10.1103/PhysRevLett.59.1037
19.
19.D. L. Huber, Phys. Rev. E 53, 6544 (1996).
http://dx.doi.org/10.1103/PhysRevE.53.6544
20.
20. increases from 0.38 to 0.59 as the bias increases from 7 to 11 V. This is likely due to the change in the energy distribution of the trapped charges.
21.
21.T. Nakazawa, M. Asano, S. Fujita, and S. Fujita, Jpn. J. Appl. Phys., Part 2 38, L206 (1999).
http://dx.doi.org/10.1143/JJAP.38.L206
22.
22.R. Kersting, U. Lemmer, M. Deussen, H. J. Bakker, R. F. Mahrt, H. Kurz, V. I. Arkhipov, H. Bässler, and E. O. Göbel, Phys. Rev. Lett. 73, 1440 (1994).
http://dx.doi.org/10.1103/PhysRevLett.73.1440
23.
23.I. Yu. Goliney, Synth. Met. 111–112, 359 (2000).
http://dx.doi.org/10.1016/S0379-6779(99)00324-0
24.
24.B. Masenelli, E. Tutis, M. N. Bussac, and L. Zuppiroli, Synth. Met. 121, 1513 (2001).
http://dx.doi.org/10.1016/S0379-6779(00)01138-3
http://aip.metastore.ingenta.com/content/aip/journal/apl/97/11/10.1063/1.3481687
Loading
/content/aip/journal/apl/97/11/10.1063/1.3481687
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/97/11/10.1063/1.3481687
2010-09-14
2014-10-31

Abstract

Intriguing electroluminescence(EL) spikes, following a voltage pulse applied to small molecular OLEDs, are discussed, elucidating carrier and exciton quenching dynamics and their relation to device structure. At low temperatures, all devices exhibit spikes at and μs-long tails. At 295 K only those with a hole injection barrier, carrier-trapping guest-host emitting layer, and no strong hole-blocking layer exhibit the spikes. They narrow and appear earlier under post-pulse reverse bias. The spikes and tails are in agreement with a revised model of recombination of correlated charge pairs (CCPs) and initially unpaired charges. Decreased post-pulse field-induced dissociative quenching of singlet excitons and CCPs, and possibly increased post-pulse current of holes that “turn back” toward the recombination zone after having drifted beyond it are suspected to cause the spikes’ amplitude, which exceeds the dc EL.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/97/11/1.3481687.html;jsessionid=15wkhbjp0k17a.x-aip-live-06?itemId=/content/aip/journal/apl/97/11/10.1063/1.3481687&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Transient electroluminescence dynamics in small molecular organic light-emitting diodes
http://aip.metastore.ingenta.com/content/aip/journal/apl/97/11/10.1063/1.3481687
10.1063/1.3481687
SEARCH_EXPAND_ITEM