1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Measurement of nanoscale external quantum efficiency of conjugated polymer:fullerene solar cells by photoconductive atomic force microscopy
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/97/11/10.1063/1.3483613
1.
1.J. Nelson, Science 293, 1059 (2001).
http://dx.doi.org/10.1126/science.1062989
2.
2.F. C. Krebs, Sol. Energy Mater. Sol. Cells 93, 394 (2009).
http://dx.doi.org/10.1016/j.solmat.2008.10.004
3.
3.H. Hoppe, M. Niggemann, C. Winder, J. Kraut, R. Hiesgen, A. Hinsch, D. Meissner, and N. S. Sariciftci, Adv. Funct. Mater. 14, 1005 (2004).
http://dx.doi.org/10.1002/adfm.200305026
4.
4.D. C. Coffey, O. G. Reid, D. B. Rodovsky, G. P. Bartholomew, and D. S. Ginger, Nano Lett. 7, 738 (2007).
http://dx.doi.org/10.1021/nl062989e
5.
5.H. Hoppe, T. Glatzel, M. Niggemann, W. Schwinger, F. Schaeffler, A. Hinsch, M. C. Lux-Steiner, and N. S. Sariciftci, Thin Solid Films 511–512, 587 (2006).
http://dx.doi.org/10.1016/j.tsf.2005.12.071
6.
6.W. Ma, A. Gopinathan, and A. J. Heeger, Adv. Mater. (Weinheim, Ger.) 19, 3656 (2007).
http://dx.doi.org/10.1002/adma.200700019
7.
7.M. Chiesa, L. Brgi, J. S. Kim, R. Shikler, R. H. Friend, and H. Sirringhaus, Nano Lett. 5, 559 (2005).
http://dx.doi.org/10.1021/nl047929s
8.
8.M. Dante, J. Peet, and T. -Q. Nguyen, J. Phys. Chem. C 112, 7241 (2008).
http://dx.doi.org/10.1021/jp712086q
9.
9.T. A. Bull, L. S. C. Pingree, S. A. Jenekhe, D. S. Ginger, and C. K. Luscombe, ACS Nano 3, 627 (2009).
http://dx.doi.org/10.1021/nn800878c
10.
10.R. Sfez, N. Peor, S. R. Cohen, H. Cohen, and S. Yitzchaik, J. Mater. Chem. 16, 4044 (2006).
http://dx.doi.org/10.1039/b609388d
11.
11.X. -D. Dang, A. B. Tamayo, J. -H. Seo, C. Hoven, B. Walker, and T. -Q. Nguyen, Adv. Funct. Mater. 22, E64 (2010).
http://dx.doi.org/10.1002/adfm.201000799
12.
12.C. V. Hoven, X. -D. Dang, R. C. Coffin, J. Peet, T. -Q. Nguyen, and G. C. Bazan, Adv. Mater. (Weinheim, Ger.) 22, E63 (2010).
http://dx.doi.org/10.1002/adma.200903677
13.
13.A. Alexeev, J. Loos, and M. M. Koetse, Ultramicroscopy 106, 191 (2006).
http://dx.doi.org/10.1016/j.ultramic.2005.07.003
14.
14.A. A. Bakulin, J. C. Hummelen, M. S. Pshenichnikov, and P. H. M. van Loosdrecht, Adv. Funct. Mater. 20, 1653 (2010).
http://dx.doi.org/10.1002/adfm.200902099
15.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/97/11/10.1063/1.3483613
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Pc-AFM setup for local IPCE measurement. Band-pass filter wheels (20 nm bandwidth, central wavelengths from 450 to 790 with 20 nm step) are computer-controlled. LLG—liquid light guide.

Image of FIG. 2.

Click to view

FIG. 2.

Absorption spectra (a) of pristine MDMO-PPV and films and (b) films cast from CB and Tol.

Image of FIG. 3.

Click to view

FIG. 3.

Topographic [(a) and (d)] and short-circuit photocurrent [(b) and (e)] images of cast from Tol and CB. All image sizes are . IPCE spectra collected in different regions of the films cast from Tol (c) and CB (f) solution as labeled with numbers and defined by the box. The IPCE in different regions is calculated from the photocurrent integrated in those areas. In (b), the regions 1, 2, and 3 are , , and , respectively. In (e), the regions 5 and 6 are and , respectively. The IPCE in regions 4 and 7 is calculated from the photocurrent integrated in entire images (b) and (e), respectively.

Loading

Article metrics loading...

/content/aip/journal/apl/97/11/10.1063/1.3483613
2010-09-17
2014-04-25

Abstract

Photoconductive atomic force microscopy is used to investigate nanoscale incident photon-to-current efficiency spectra of polymer bulk heterojunction solar cells based on poly[2-methoxy-5-(3,7-dimethyloctyloxy)]-1,4-phenylenevinylene (MDMO-PPV) and [6,6]-phenyl--butyric acid methyl ester . Nanoscale external quantum efficiency reveals the complex morphology of films cast from toluene solution. Not only electron transfer from the photoexcited donor to the fullerene but also hole transfer process from photoexcited fullerene to the donor phase due to highest occupied molecular orbital offset is observed. The difference in performance between toluene and chlorobenzene-cast devices is explained by the variation in relative contributions from two charge transfer mechanisms.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/97/11/1.3483613.html;jsessionid=1g25ndkdz4i0d.x-aip-live-06?itemId=/content/aip/journal/apl/97/11/10.1063/1.3483613&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Measurement of nanoscale external quantum efficiency of conjugated polymer:fullerene solar cells by photoconductive atomic force microscopy
http://aip.metastore.ingenta.com/content/aip/journal/apl/97/11/10.1063/1.3483613
10.1063/1.3483613
SEARCH_EXPAND_ITEM