Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/97/13/10.1063/1.3494535
1.
1.Z. W. Pan, Z. R. Dai, and Z. L. Wang, Science 291, 1947 (2001).
http://dx.doi.org/10.1126/science.1058120
2.
2.Z. L. Wang, X. Y. Kong, Y. Ding, P. Gao, W. L. Hughes, R. Yang, and Y. Zhang, Adv. Funct. Mater. 14, 943 (2004).
http://dx.doi.org/10.1002/adfm.200400180
3.
3.Z. L. Wang, J. Phys.: Condens. Matter 16, R829 (2004).
http://dx.doi.org/10.1088/0953-8984/16/25/R01
4.
4.J. H. Yang, X. Y. Liu, L. L. Yang, Y. X. Wang, Y. J. Zhang, J. H. Lang, M. Gao, and B. Feng, J. Alloys Compd. 477, 632 (2009).
http://dx.doi.org/10.1016/j.jallcom.2008.10.135
5.
5.S. Yamamoto, H. Yano, T. Mishina, and J. Nakahara, J. Lumin. 126, 257 (2007).
http://dx.doi.org/10.1016/j.jlumin.2006.08.055
6.
6.Ü. Özgür, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S. -J. Cho, and H. Morkoç, J. Appl. Phys. 98, 041301 (2005).
http://dx.doi.org/10.1063/1.1992666
7.
7.N. N. Syrbu, I. M. Tiginyanu, V. V. Zalamai, V. V. Ursaki, and E. V. Rusu, Physica B 353, 111 (2004).
http://dx.doi.org/10.1016/j.physb.2004.09.007
8.
8.E. Furno, F. Bertazzi, M. Goano, G. Ghione, and E. Bellotti, Solid-State Electron. 52, 1796 (2008).
http://dx.doi.org/10.1016/j.sse.2008.08.001
9.
9.B. Gil and A. V. Kavokin, Appl. Phys. Lett. 81, 748 (2002).
http://dx.doi.org/10.1063/1.1494864
http://aip.metastore.ingenta.com/content/aip/journal/apl/97/13/10.1063/1.3494535
Loading
/content/aip/journal/apl/97/13/10.1063/1.3494535
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/97/13/10.1063/1.3494535
2010-09-29
2016-07-28

Abstract

Experimental and theoretical studies of fluorescence decay were performed for colloidal ZnOnanocrystals. The fluorescence lifetime reduces from 22 ps to with decreasing nanocrystal radius. We postulate that non-radiative surface states dominate the carrier dynamics in small ZnOnanocrystals and perform Monte Carlo simulations incorporating carrier diffusion and carrier recombination to model the experimental fluorescence decay dynamics. The percentage of excitons undergoing nonradiative decay due to surface trapping is as high as 84% for nanocrystals with 8 nm radius, which explains the ultrafast decay dynamics observed in small ZnO nanostructures even at low temperatures.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/97/13/1.3494535.html;jsessionid=cEn5x4QWXcJHuceGx8el-6WF.x-aip-live-03?itemId=/content/aip/journal/apl/97/13/10.1063/1.3494535&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true

Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
/content/realmedia?fmt=ahah&adPositionList=
&advertTargetUrl=//oascentral.aip.org/RealMedia/ads/&sitePageValue=apl.aip.org/97/13/10.1063/1.3494535&pageURL=http://scitation.aip.org/content/aip/journal/apl/97/13/10.1063/1.3494535'
x100,x101,x102,x103,
Position1,Position2,Position3,
Right1,Right2,Right3,