1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Transition from insulator to metal induced by hybridized connection of graphene and boron nitride nanoribbons
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/97/19/10.1063/1.3515921
1.
1.K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science 306, 666 (2004).
http://dx.doi.org/10.1126/science.1102896
2.
2.Y. -W. Son, M. L. Cohen, and S. G. Louie, Nature (London) 444, 347 (2006).
http://dx.doi.org/10.1038/nature05180
3.
3.A. K. Geim and K. S. Novoselov, Nature Mater. 6, 183 (2007).
http://dx.doi.org/10.1038/nmat1849
4.
4.M. Q. Long, L. Tang, D. Wang, L. Wang, and Z. Shuai, J. Am. Chem. Soc. 131, 17728 (2009).
5.
5.Y. Ren and K. Q. Chen, J. Appl. Phys. 107, 044514 (2010).
http://dx.doi.org/10.1063/1.3309775
6.
6.C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, Science 312, 1191 (2006).
http://dx.doi.org/10.1126/science.1125925
7.
7.C. Jin, F. Lin, K. Suenaga, and S. Iijima, Phys. Rev. Lett. 102, 195505 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.195505
8.
8.W. Q. Han, L. Wu, Y. Zhu, K. Watanabe, and T. Taniguchi, Appl. Phys. Lett. 93, 223103 (2008).
http://dx.doi.org/10.1063/1.3041639
9.
9.A. J. Du, S. C. Smith, and G. Q. Lu, Chem. Phys. Lett. 447, 181 (2007).
http://dx.doi.org/10.1016/j.cplett.2007.09.038
10.
10.J. Zhou, Q. Wang, Q. Sun, and P. Jena, Phys. Rev. B 81, 085442 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.085442
11.
11.F. Zheng, G. Zhou, Z. Liu, J. Wu, W. Duan, B. -L. Gu, and S. B. Zhang, Phys. Rev. B 78, 205415 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.205415
12.
12.Y. Ding, Y. Wang, and J. Ni, Appl. Phys. Lett. 94, 233107 (2009).
http://dx.doi.org/10.1063/1.3152767
13.
13.V. Barone and J. E. Peralta, Nano Lett. 8, 2210 (2008).
http://dx.doi.org/10.1021/nl080745j
14.
14.L. Ci, L. Song, C. Jin, D. Jariwala, D. Wu, Y. Li, A. Srivastava, Z. F. Wang, K. Storr, L. Balicas, F. Liu, and P. M. Ajayan, Nature Mater. 9, 430 (2010).
http://dx.doi.org/10.1038/nmat2711
15.
15.J. Taylor, H. Guo, and J. Wang, Phys. Rev. B 63, 245407 (2001).
http://dx.doi.org/10.1103/PhysRevB.63.245407
16.
16.M. Brandbyge, J. L. Mozos, P. Ordejon, J. Taylor, and K. Stokbro, Phys. Rev. B 65, 165401 (2002).
http://dx.doi.org/10.1103/PhysRevB.65.165401
17.
17.See http://quantumwise.com/ for ATOMISTIX TOOLKIT.
18.
18.M. Büttiker and R. Landauer, Phys. Rev. B 31, 6207 (1985).
http://dx.doi.org/10.1103/PhysRevB.31.6207
19.
19.M. Topsakal, E. Aktrk, and S. Ciraci, Phys. Rev. B 79, 115442 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.115442
20.
20.J. M. Pruneda, Phys. Rev. B 81, 161409(R) (2010).
http://dx.doi.org/10.1103/PhysRevB.81.161409
21.
21.X. H. Zheng, R. N. Wang, L. L. Song, Z. X. Dai, X. l. Wang, and Z. Zeng, Appl. Phys. Lett. 95, 123109 (2009).
http://dx.doi.org/10.1063/1.3237165
22.
22.M. G. Zeng, L. Shen, Y. Q. Cai, Z. D. Sha, and Y. P. Feng, Appl. Phys. Lett. 96, 042104 (2010).
http://dx.doi.org/10.1063/1.3299264
23.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/97/19/10.1063/1.3515921
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) is the atomic geometries of the relaxed , where the dashed rectangle denotes the unit cell of the system; (b) describes the hybrid connection with , which is named by ; (c) is the structures of the two probes system, where A–C correspond to the left electrode, the center scattering region, and the right electrode, respectively.

Image of FIG. 2.

Click to view

FIG. 2.

The calculated band structures: (a)–(f) correspond to , , , , , and , respectively. The solid and dotted curves correspond to spin-up and spin-down states, respectively. The dash curve stands for Fermi level, and the Fermi level is set to be zero.

Image of FIG. 3.

Click to view

FIG. 3.

(a) is the current as a function of the applied bias for hybrid devices. and correspond to and of , and correspond to and of , and and correspond to and of , respectively. (b)–(c) correspond to LDOS for the spin-up and spin-down electrons for system, and (d)–(e) correspond to LDOS for the spin-up and spin-down electrons for system at the Fermi level at zero bias, respectively.

Image of FIG. 4.

Click to view

FIG. 4.

The spin-dependent transmission spectra and the DOS at zero bias. (a)–(c) correspond to , , and , respectively. The blue solid curves stand for transmission spectra while the red dot curves for DOS. Positive and negative transmission and DOS are for spin-up and spin-down electrons, respectively.

Loading

Article metrics loading...

/content/aip/journal/apl/97/19/10.1063/1.3515921
2010-11-09
2014-04-18

Abstract

A hybridized structure constructed by zigzag boron nitride nanoribbon and zigzag graphenenanoribbon is proposed, and their band structures and electronic transport properties are calculated by applying first-principles calculations. The results show that the band gap of the hybridized structure can be tuned and transitions from insulator to metal can be realized by changing the unit number of zigzag graphenenanoribbon. The currents with different spin polarization display different behavior.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/97/19/1.3515921.html;jsessionid=fpxn5hatohau.x-aip-live-01?itemId=/content/aip/journal/apl/97/19/10.1063/1.3515921&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Transition from insulator to metal induced by hybridized connection of graphene and boron nitride nanoribbons
http://aip.metastore.ingenta.com/content/aip/journal/apl/97/19/10.1063/1.3515921
10.1063/1.3515921
SEARCH_EXPAND_ITEM