1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Solution-processed cross-linkable hole selective layer for polymer solar cells in the inverted structure
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/97/19/10.1063/1.3518074
1.
1.N. S. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl, Science 258, 1474 (1992).
http://dx.doi.org/10.1126/science.258.5087.1474
2.
2.G. Yu, J. Gao, J. C. Hemmelen, F. Wudl, and A. J. Heeger, Science 270, 1789 (1995).
http://dx.doi.org/10.1126/science.270.5243.1789
3.
3.P. W. M. Blom, V. D. Mihailetchi, L. J. A. Koster, and D. E. Markov, Adv. Mater. (Weinheim, Ger.) 19, 1551 (2007).
http://dx.doi.org/10.1002/adma.200601093
4.
4.S. Günes, H. Neugebauer, and N. S. Sariciftci, Chem. Rev. (Washington, D.C.) 107, 1324 (2007).
http://dx.doi.org/10.1021/cr050149z
5.
5.G. Dennler, M. C. Scharber, and C. J. Brabec, Adv. Mater. (Weinheim, Ger.) 21, 1323 (2009).
http://dx.doi.org/10.1002/adma.200801283
6.
6.L. M. Chen, Z. Hong, G. Li, and Y. Yang, Adv. Mater. (Weinheim, Ger.) 21, 1434 (2009).
http://dx.doi.org/10.1002/adma.200802854
7.
7.S. H. Park, A. Roy, S. Beaupre, S. Cho, N. Coates, J. S. Moon, D. Moses, M. Leclerc, K. Lee, and A. J. Heeger, Nat. Photonics 3, 297 (2009).
http://dx.doi.org/10.1038/nphoton.2009.69
8.
8.Y. Y. Liang, Z. Xu, J. Xia, S. -T. Tsai, Y. Wu, G. Li, C. Ray, and L. Yu, Adv. Mater. (Weinheim, Ger.) 22, E135 (2010).
http://dx.doi.org/10.1002/adma.200903528
9.
9.H. Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, and G. Li, Nat. Photonics 3, 649 (2009).
http://dx.doi.org/10.1038/nphoton.2009.192
10.
10.C. Piliego, T. W. Holcombe, J. D. Douglas, C. H. Woo, P. M. Beaujuge, and J. M. J. Frchet, J. Am. Chem. Soc. 132, 7595 (2010).
http://dx.doi.org/10.1021/ja103275u
11.
11.T. Yang, W. Cai, D. Qin, E. Wang, L. Lan, X. Gong, J. Peng, and Y. Cao, J. Phys. Chem. C 114, 6849 (2010).
http://dx.doi.org/10.1021/jp1003984
12.
12.S. K. Hau, H. -L. Yip, N. S. Baek, J. Zou, K. O’Malley, and A. K.-Y. Jen, Appl. Phys. Lett. 92, 253301 (2008).
http://dx.doi.org/10.1063/1.2945281
13.
13.C. -H. Hsieh, Y. -J. Cheng, P. -J. Li, C. -H. Chen, M. Dubosc, R. -M. Liang, and C. -S. Hsu, J. Am. Chem. Soc. 132, 4887 (2010).
http://dx.doi.org/10.1021/ja100236b
14.
14.J. Y. Kim, S. H. Kim, H. H. Lee, K. Lee, W. L. Ma, X. Gong, and A. J. Heeger, Adv. Mater. (Weinheim, Ger.) 18, 572 (2006).
http://dx.doi.org/10.1002/adma.200501825
15.
15.A. Hayakawa, O. Yoshikawa, T. Fujieda, K. Uehara, and S. Yoshikawa, Appl. Phys. Lett. 90, 163517 (2007).
http://dx.doi.org/10.1063/1.2730746
16.
16.C. Waldauf, M. Morana, P. Denk, P. Schilinsky, K. Coakley, S. A. Choulis, and C. J. Brabec, Appl. Phys. Lett. 89, 233517 (2006).
http://dx.doi.org/10.1063/1.2402890
17.
17.M. S. White, D. C. Olson, S. E. Shaheen, N. Kopidakis, and D. S. Ginley, Appl. Phys. Lett. 89, 143517 (2006).
http://dx.doi.org/10.1063/1.2359579
18.
18.G. Li, C. -W. Chu, V. Shrotriya, J. Huang, and Y. Yang, Appl. Phys. Lett. 88, 253503 (2006).
http://dx.doi.org/10.1063/1.2212270
19.
19.A. K. K. Kyaw, X. W. Sun, C. Y. Jiang, G. Q. Lo, D. W. Zhao, and D. L. Kwong, Appl. Phys. Lett. 93, 221107 (2008).
http://dx.doi.org/10.1063/1.3039076
20.
20.C. Tao, S. Ruan, X. Zhang, G. Xie, L. Shen, X. Kong, W. Dong, C. Liu, and W. Chen, Appl. Phys. Lett. 93, 193307 (2008).
http://dx.doi.org/10.1063/1.3026741
21.
21.C. Tao, S. Ruan, G. Xie, X. Kong, L. Shen, F. Meng, C. Liu, X. Zhang, W. Dong, and W. Chen, Appl. Phys. Lett. 94, 043311 (2009).
http://dx.doi.org/10.1063/1.3076134
22.
22.K. Kawano, R. Pacios, D. Poplavskyy, J. Nelson, D. D. C. Bradley, and J. R. Durrant, Sol. Energy Mater. Sol. Cells 90, 3520 (2006).
http://dx.doi.org/10.1016/j.solmat.2006.06.041
23.
23.M. P. de Jong, L. J. van IJzendoorn, and M. J. A. de Voigt, Appl. Phys. Lett. 77, 2255 (2000).
http://dx.doi.org/10.1063/1.1315344
24.
24.H. Yan, P. Lee, A. G. Armstrong, G. A. Evmenenko, P. Dutta, and T. J. Marks, J. Am. Chem. Soc. 127, 3172 (2005).
http://dx.doi.org/10.1021/ja044455q
25.
25.F. Huang, Y. J. Cheng, Y. Zhang, M. S. Liu, and A. K.-Y. Jen, J. Mater. Chem. 18, 4495 (2008).
http://dx.doi.org/10.1039/b804977g
26.
26.H. Ma, H. -L. Yip, F. Huang, and A. K.-Y. Jen, Adv. Funct. Mater. 20, 1371 (2010).
http://dx.doi.org/10.1002/adfm.200902236
27.
27.S. Cho, J. H. Seo, K. Lee, and A. J. Heeger, Adv. Funct. Mater. 19, 1459 (2009).
http://dx.doi.org/10.1002/adfm.200900189
28.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/97/19/10.1063/1.3518074
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) Molecular structures of TPD-BVB, C-TPD-BVB, and the inverted device structure. (b) Energy level diagram of each component material.

Image of FIG. 2.

Click to view

FIG. 2.

(a) AFM image of the ZnO film surface on ITO substrate. (b) Absorption spectrum of ZnO film on quartz substrate. (c) Absorption spectra of C-TPD-BVB film on quartz substrate before and after immersing into DCB solvent and non-crosslinked TPD-BVB film after immersing into DCB solvent.

Image of FIG. 3.

Click to view

FIG. 3.

Transfer characteristics of bipolar FETs based on P3HT/PCBM blend with and without a thin C-TPD-BVB layer. Drain current under negative gate voltage indicates hole transport (left-hand side); drain current under positive gate voltage indicates electron transport (right-hand side); drain-source voltage, . Inset: structure of the bipolar FET, which was fabricated on a heavily n-type doped silicon wafer with a 200 nm thick thermally grown layer. The channel length and channel width were and 1.5 mm, respectively.

Image of FIG. 4.

Click to view

FIG. 4.

(a) J-V characteristics of devices B and C. (b) Dark current characteristics of devices B and C. (c) IPCE spectra of devices B and C. (d) Normalized PCEs as a function of storage time for devices B and C in air under ambient conditions.

Tables

Generic image for table

Click to view

Table I.

Summary of the performance of PSCs with an inverted device structure.

Loading

Article metrics loading...

/content/aip/journal/apl/97/19/10.1063/1.3518074
2010-11-12
2014-04-21

Abstract

Solution-processed cross-linkable tetraphenyldiamine-containing material (TPD-BVB) as a highly efficient hole selective transport layer was demonstrated. Polymersolar cells (PSCs) with an inverted structure fabricated with a thin cross-linked TPD-BVB film show comparable efficiency and superior long-term air stability when compared to devices fabricated with poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS). Thus, solution-processed TPD-BVB is an attractive alternative to PEDOT:PSS as a hole extraction layer in inverted structure PSCs.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/97/19/1.3518074.html;jsessionid=4b4u4u4rojd09.x-aip-live-01?itemId=/content/aip/journal/apl/97/19/10.1063/1.3518074&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Solution-processed cross-linkable hole selective layer for polymer solar cells in the inverted structure
http://aip.metastore.ingenta.com/content/aip/journal/apl/97/19/10.1063/1.3518074
10.1063/1.3518074
SEARCH_EXPAND_ITEM