1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Graphene oxide nanosheets based organic field effect transistor for nonvolatile memory applications
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/97/2/10.1063/1.3464292
1.
1.C. D. Müller, A. Falcou, N. Reckefuss, M. Rojahn, V. Wiederhirn, P. Rudati, H. Frohne, O. Nuyken, H. Becker, and K. Meerholz, Nature (London) 421, 829 (2003).
http://dx.doi.org/10.1038/nature01390
2.
2.G. Darlinski, U. Böttger, R. Waser, H. Klauk, M. Halik, U. Zschieschang, G. Schmid, and C. Dehm, J. Appl. Phys. 97, 093708 (2005).
http://dx.doi.org/10.1063/1.1888046
3.
3.T. W. Lee, Y. Byun, B. W. Koo, I. N. Kang, Y. Y. Lyu, C. H. Lee, L. Pu, and S. Y. Lee, Adv. Mater. 17, 2180 (2005).
http://dx.doi.org/10.1002/adma.200401672
4.
4.J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T. Q. Nguyen, M. Dante, and A. J. Heeger, Science 317, 222 (2007).
http://dx.doi.org/10.1126/science.1141711
5.
5.T. -W. Kim, S. -H. Oh, H. Choi, G. Wang, D. -Y. Kim, H. Hwang, and T. Lee, Appl. Phys. Lett. 92, 253308 (2008).
http://dx.doi.org/10.1063/1.2952825
6.
6.K. -J. Baeg, Y. -Y. Noh, J. Ghim, S. -J. Kang, H. Lee, and D. -Y. Kim, Adv. Mater. 18, 3179 (2006).
http://dx.doi.org/10.1002/adma.200601434
7.
7.Q. -D. Ling, D. -J. Liaw, C. Zhu, D. S.-H. Chan, E. -T. Kang, and K. -G. Neoh, Prog. Polym. Sci. 33, 917 (2008).
http://dx.doi.org/10.1016/j.progpolymsci.2008.08.001
8.
8.W. L. Leong, P. S. Lee, A. Lohani, Y. M. Lam, T. Chen, S. Zhang, A. Dodabalapur, and S. G. Mhaisalkar, Adv. Mater. 20, 2325 (2008).
http://dx.doi.org/10.1002/adma.200702567
9.
9.Z. C. Liu, F. L. Xue, Y. Su, Y. M. Lvov, and K. Varahramyan, IEEE Trans. Nanotechnol. 5, 379 (2006).
http://dx.doi.org/10.1109/TNANO.2006.876928
10.
10.C. Novembre, D. Guérin, K. Lmimouni, C. Gamrat, and D. Vuillaume, Appl. Phys. Lett. 92, 103314 (2008).
http://dx.doi.org/10.1063/1.2896602
11.
11.S. J. Kim, Y. S. Park, S. H. Lyu, and J. S. Lee, Appl. Phys. Lett. 96, 033302 (2010).
http://dx.doi.org/10.1063/1.3297878
12.
12.C. W. Tseng and Y. T. Tao, J. Am. Chem. Soc. 131, 12441 (2009).
http://dx.doi.org/10.1021/ja904882m
13.
13.K. J. Baeg, Y. Y. Noh, H. Sirringhaus, and D. Y. Kim, Adv. Funct. Mater. 20, 224 (2010).
http://dx.doi.org/10.1002/adfm.200901677
14.
14.T. Sekitani, T. Yokota, U. Zschieschang, H. Klauk, S. Bauer, K. Takeuchi, M. Takamiya, T. Sakurai, and T. Someya, Science 326, 1516 (2009).
http://dx.doi.org/10.1126/science.1179963
15.
15.M. Hirata, T. Gotou, S. Horiuchi, M. Fujiwara, and M. Ohba, Carbon 42, 2929 (2004).
16.
16.H. A. Becerril, J. Mao, Z. Liu, R. M. Stoltenberg, Z. Bao, and Y. Chen, ACS Nano 2, 463 (2008).
http://dx.doi.org/10.1021/nn700375n
17.
17.I. Y. Lee, E. S. Kannan, and G. -H. Kim, Appl. Phys. Lett. 95, 263308 (2009).
http://dx.doi.org/10.1063/1.3280381
18.
18.S. Wang, J. Pu, D. S. H. Chan, B. J. Cho, and K. P. Loh, Appl. Phys. Lett. 96, 143109 (2010).
http://dx.doi.org/10.1063/1.3383234
19.
19.L. J. Cote, F. Kim, and J. X. Huang, J. Am. Chem. Soc. 131, 1043 (2009).
http://dx.doi.org/10.1021/ja806262m
20.
20.C. Gómez-Navarro, R. T. Weitz, A. M. Bittner, M. Scolari, A. Mews, M. Burghard, and K. Kern, Nano Lett. 7, 3499 (2007).
http://dx.doi.org/10.1021/nl072090c
21.
21.T. Szabo, O. Berkesi, and I. Dekany, Carbon 43, 3181 (2005).
http://dx.doi.org/10.1016/j.carbon.2005.07.024
22.
22.G. Eda and M. Chhowalla, Adv. Mater. 22, 2392 (2010).
http://dx.doi.org/10.1002/adma.200903689
23.
23.Y. Xu, H. Bai, G. Lu, C. Li, and G. Shi, J. Am. Chem. Soc. 130, 5856 (2008).
http://dx.doi.org/10.1021/ja800745y
24.
24.J. -H. Chen, W. G. Cullen, C. Jang, M. S. Fuhrer, and E. D. Williams, Phys. Rev. Lett. 102, 236805 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.236805
25.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/97/2/10.1063/1.3464292
Loading
/content/aip/journal/apl/97/2/10.1063/1.3464292
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/97/2/10.1063/1.3464292
2010-07-15
2014-07-12

Abstract

Reversible switching characteristics of organic nonvolatile memory transistors (ONVMTs) using chemically synthesized graphene oxide (GO) nanosheets as a charge-trapping layer are reported. The transfer curves of GO based ONVMTs showed large gate bias dependent hysteresis with threshold voltage shifts over 20 V. After writing and erasing, stored data were well maintained showing more than two orders of ON/OFF ratio for . These results suggest that GO nanosheets are one potential candidate as the charge-trapping layer in ONVMTs.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/97/2/1.3464292.html;jsessionid=lppr705sq5cx.x-aip-live-06?itemId=/content/aip/journal/apl/97/2/10.1063/1.3464292&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Graphene oxide nanosheets based organic field effect transistor for nonvolatile memory applications
http://aip.metastore.ingenta.com/content/aip/journal/apl/97/2/10.1063/1.3464292
10.1063/1.3464292
SEARCH_EXPAND_ITEM