NOTICE: Scitation Maintenance Tuesday, May 5, 2015

Scitation will be unavailable on Tuesday, May 5, 2015 between 3:00 AM and 4:00 AM EST due to planned network maintenance.

Thank you for your patience during this process.

1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
/content/aip/journal/apl/97/21/10.1063/1.3514551
1.
1.K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. -H. Ahn, P. Kim, J. -Y. Choi, and B. H. Hong, Nature (London) 457, 706 (2009).
http://dx.doi.org/10.1038/nature07719
2.
2.G. Eda, G. Fanchini, and M. Chhowalla, Nat. Nanotechnol. 3, 270 (2008).
http://dx.doi.org/10.1038/nnano.2008.83
3.
3.P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang, F. Schedin, L. A. Ponomarenko, S. V. Morozov, H. F. Gleeson, E. W. Hill, A. K. Geim, and K. S. Novoselov, Nano Lett. 8, 1704 (2008).
http://dx.doi.org/10.1021/nl080649i
4.
4.G. Jo, M. Choe, C. -Y. Cho, J. H. Kim, W. Park, S. Lee, W. -K. Hong, T. -W. Kim, S. -J. Park, B. H. Hong, Y. H. Kahng, and T. Lee, Nanotechnology 21, 175201 (2010).
http://dx.doi.org/10.1088/0957-4484/21/17/175201
5.
5.L. Gomez De Arco, Y. Zhang, C. W. Schlenker, K. Ryu, M. E. Thompson, and C. Zhou, ACS Nano 4, 2865 (2010).
http://dx.doi.org/10.1021/nn901587x
6.
6.V. C. Tung, L. -M. Chen, M. J. Allen, J. K. Wassei, K. Nelson, R. B. Kaner, and Y. Yang, Nano Lett. 9, 1949 (2009).
http://dx.doi.org/10.1021/nl9001525
7.
7.X. Wang, L. Zhi, and K. Mullen, Nano Lett. 8, 323 (2008).
http://dx.doi.org/10.1021/nl072838r
8.
8.Y. Wang, X. Chen, Y. Zhong, F. Zhu, and K. P. Loh, Appl. Phys. Lett. 95, 063302 (2009).
http://dx.doi.org/10.1063/1.3204698
9.
9.J. Wu, H. A. Becerril, Z. Bao, Z. Liu, Y. Chen, and P. Peumans, Appl. Phys. Lett. 92, 263302 (2008).
http://dx.doi.org/10.1063/1.2924771
10.
10.Z. Yin, S. Wu, X. Zhou, X. Huang, Q. Zhang, F. Boey, and H. Zhang, Small 6, 307 (2010).
http://dx.doi.org/10.1002/smll.200901968
11.
11.L. -M. Chen, Z. Hong, G. Li, and Y. Yang, Adv. Mater. (Weinheim, Ger.) 21, 1434 (2009).
http://dx.doi.org/10.1002/adma.200802854
12.
12.J. Y. Kim, K. Lee, N. E. Coates, D. Moses, T. -Q. Nguyen, M. Dante, and A. J. Heeger, Science 317, 222 (2007).
http://dx.doi.org/10.1126/science.1141711
13.
13.H. Ma, H. -L. Yip, F. Huang, and A. K.-Y. Jen, Adv. Funct. Mater. 20, 1371 (2010).
http://dx.doi.org/10.1002/adfm.200902236
14.
14.S. -I. Na, S. -W. Oh, S. -S. Kim, and D. -Y. Kim, Org. Electron. 10, 496 (2009).
http://dx.doi.org/10.1016/j.orgel.2009.02.009
15.
15.H. -L. Yip, S. K. Hau, N. S. Baek, and A. K.-Y. Jen, Appl. Phys. Lett. 92, 193313 (2008).
http://dx.doi.org/10.1063/1.2919524
16.
16.Y. Zhou, F. Li, S. Barrau, W. Tian, O. Inganäs, and F. Zhang, Sol. Energy Mater. Sol. Cells 93, 497 (2009).
http://dx.doi.org/10.1016/j.solmat.2008.11.002
17.
17.F. Zhang, M. Ceder, and O. Inganäs, Adv. Mater. (Weinheim, Ger.) 19, 1835 (2007).
http://dx.doi.org/10.1002/adma.200602597
18.
18.S. -H. Oh, S. -I. Na, J. Jo, B. Lim, D. Vak, and D. -Y. Kim, Adv. Funct. Mater. 20, 1977 (2010).
http://dx.doi.org/10.1002/adfm.200902386
19.
19.X. Li, Y. Zhu, W. Cai, M. Borysiak, B. Han, D. Chen, R. D. Piner, L. Colombo, and R. S. Ruoff, Nano Lett. 9, 4359 (2009).
http://dx.doi.org/10.1021/nl902623y
20.
20.S. Bae, H. Kim, Y. Lee, X. Xu, J. -S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. -J. Kim, K. S. Kim, B. Özyilmaz, J. -H. Ahn, B. H. Hong, and S. Iijima, Nat. Nanotechnol. 5, 574 (2010).
http://dx.doi.org/10.1038/nnano.2010.132
21.
21.S. K. Hau, H. -L. Yip, N. S. Baek, J. Zou, K. O’Malley, and A. K.-Y. Jen, Appl. Phys. Lett. 92, 253301 (2008).
http://dx.doi.org/10.1063/1.2945281
http://aip.metastore.ingenta.com/content/aip/journal/apl/97/21/10.1063/1.3514551
Loading
/content/aip/journal/apl/97/21/10.1063/1.3514551
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/97/21/10.1063/1.3514551
2010-11-23
2015-05-04

Abstract

We demonstrate the fabrication of inverted-structure organic solar cells (OSCs) with graphenecathodes. The graphene film used in this work was work-function-engineered with an interfacial dipole layer to reduce the work function of graphene, which resulted in an increase in the built-in potential and enhancement of the charge extraction, thereby enhancing the overall device performance. Our demonstration of inverted-structure OSCs with work-function-engineering of grapheneelectrodes will foster the fabrication of more advanced structure OSCs with higher efficiency.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/97/21/1.3514551.html;jsessionid=ajct3uc2msacp.x-aip-live-02?itemId=/content/aip/journal/apl/97/21/10.1063/1.3514551&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address

Oops! This section, does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Tuning of a graphene-electrode work function to enhance the efficiency of organic bulk heterojunction photovoltaic cells with an inverted structure
http://aip.metastore.ingenta.com/content/aip/journal/apl/97/21/10.1063/1.3514551
10.1063/1.3514551
SEARCH_EXPAND_ITEM