1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Experimental observation of polarized electroluminescence from edge-emission organic light emitting devices
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/97/23/10.1063/1.3525161
1.
1.C. W. Tang and S. A. VanSlyke, Appl. Phys. Lett. 51, 913 (1987).
http://dx.doi.org/10.1063/1.98799
2.
2.J. M. Burroughes, D. D. C. Bradley, A. R. Brown, A. N. Marks, K. Mackay, R. H. Friend, P. L. Burn, and A. B. Holmes, Nature (London) 347, 539 (1990).
http://dx.doi.org/10.1038/347539a0
3.
3.J. Kido, M. Kimura, and K. Nagai, Science 267, 1332 (1995).
http://dx.doi.org/10.1126/science.267.5202.1332
4.
4.S. T. Lee, Y. M. Wang, X. Y. Hou, and C. W. Tang, Appl. Phys. Lett. 74, 670 (1999).
http://dx.doi.org/10.1063/1.122982
5.
5.M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson, and S. R. Forrest, Appl. Phys. Lett. 75, 4 (1999).
http://dx.doi.org/10.1063/1.124258
6.
6.S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, and K. Leo, Nature (London) 459, 234 (2009).
http://dx.doi.org/10.1038/nature08003
7.
7.P. A. Hobson, J. A. E. Wasey, I. Sage, and W. L. Barnes, IEEE J. Sel. Top. Quantum Electron. 8, 378 (2002).
http://dx.doi.org/10.1109/2944.999193
8.
8.W. L. Barnes, A. Dereux, and T. W. Ebbesen, Nature (London) 424, 824 (2003).
http://dx.doi.org/10.1038/nature01937
9.
9.G. W. Ford and W. H. Weber, Phys. Rep. 113, 195 (1984).
http://dx.doi.org/10.1016/0370-1573(84)90098-X
10.
10.R. R. Chance, A. Prock, and R. Silbey, Adv. Chem. Phys. 37, 1 (1978).
http://dx.doi.org/10.1002/9780470142561.ch1
11.
11.K. Y. Yang, K. C. Choi, and C. W. Ahn, Opt. Express 17, 11495 (2009).
http://dx.doi.org/10.1364/OE.17.011495
12.
12.C. J. Yates, I. D. W. Samuel, P. L. Burn, S. Wedge, and W. L. Barnes, Appl. Phys. Lett. 88, 161105 (2006).
http://dx.doi.org/10.1063/1.2193795
13.
13.A. Fujiki, T. Uemura, N. Zettsu, M. Akai-Kasaya, A. Saito, and Y. Kuwahara, Appl. Phys. Lett. 96, 043307 (2010).
http://dx.doi.org/10.1063/1.3271773
14.
14.J. Feng, T. Okamoto, R. Naraoka, and S. Kawata, Appl. Phys. Lett. 93, 051106 (2008).
http://dx.doi.org/10.1063/1.2968309
15.
15.H. T. Miyazaki and Y. Kurokawa, Phys. Rev. Lett. 96, 097401 (2006).
http://dx.doi.org/10.1103/PhysRevLett.96.097401
16.
16.D. M. Koller, A. Hohenau, H. Ditlbacher, N. Galler, F. Reil, F. R. Aussenegg, A. Leitner, E. J. W. List, and J. R. Krenn, Nat. Photonics 2, 684 (2008).
http://dx.doi.org/10.1038/nphoton.2008.200
17.
17.J. A. Dionne, L. A. Sweatlock, M. T. Sheldon, A. P. Alivisatos, and H. A. Atwater, IEEE J. Sel. Top. Quantum Electron. 16, 295 (2010).
http://dx.doi.org/10.1109/JSTQE.2009.2034983
18.
18.R. J. Walters, R. V. A. van Loon, I. Brunets, J. Schmitz, and A. Polman, Nature Mater. 9, 21 (2010).
http://dx.doi.org/10.1038/nmat2595
19.
19.E. Ozbay, Science 311, 189 (2006).
http://dx.doi.org/10.1126/science.1114849
20.
20.T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, Phys. Today 61, 44 (2008).
http://dx.doi.org/10.1063/1.2930735
21.
21.J. Clark and G. Lanzani, Nat. Photonics 4, 438 (2010).
http://dx.doi.org/10.1038/nphoton.2010.160
22.
22.W. Q. Zhao, G. Z. Ran, W. J. Xu, and G. G. Qin, Appl. Phys. Lett. 92, 073303 (2008).
http://dx.doi.org/10.1063/1.2857543
23.
23.W. L. Barnes, J. Lightwave Technol. 17, 2170 (1999).
http://dx.doi.org/10.1109/50.803008
24.
24.G. Z. Ran, W. Q. Zhao, L. Dai, and G. G. Qin, J. Appl. Phys. 100, 113107 (2006).
http://dx.doi.org/10.1063/1.2388875
25.
25.Handbook of Optical Constants of Solids I, in II, & III, edited by E. D. Palik (Academic, London, 1998).
26.
26.V. Bulović, V. B. Khalfin, G. Gu, P. E. Burrows, D. Z. Garbuzov, and S. R. Forrest, Phys. Rev. B 58, 3730 (1998).
http://dx.doi.org/10.1103/PhysRevB.58.3730
http://aip.metastore.ingenta.com/content/aip/journal/apl/97/23/10.1063/1.3525161
Loading
/content/aip/journal/apl/97/23/10.1063/1.3525161
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/97/23/10.1063/1.3525161
2010-12-09
2014-10-22

Abstract

We have observed a strongly polarized edge-emission from an organic light emitting device(OLED) with a siliconanode and a stacked Sm/Au (or Ag)cathode. For the OLED with a Sm/Au cathode, the transverse magnetic (TM) mode is stronger than the transverse electric (TE) mode by a factor of 2, while the polarization ratio of TM:TE is close to 300 for that with a Sm/Ag cathode. The polarization results from the scattering of surface plasmon polaritons at the device boundary. Such a silicon-based OLED is potentially an electrically excited SPP source in plasmonics.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/97/23/1.3525161.html;jsessionid=9it5da2a3dvu.x-aip-live-02?itemId=/content/aip/journal/apl/97/23/10.1063/1.3525161&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Experimental observation of polarized electroluminescence from edge-emission organic light emitting devices
http://aip.metastore.ingenta.com/content/aip/journal/apl/97/23/10.1063/1.3525161
10.1063/1.3525161
SEARCH_EXPAND_ITEM