1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Interface formation between tris(8-hydroxyquinoline) aluminum and ZnO nanowires and film
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/97/26/10.1063/1.3531812
1.
1.C. W. Tang and S. A. Van Slyke, Appl. Phys. Lett. 51, 913 (1987).
http://dx.doi.org/10.1063/1.98799
2.
2.N. S. Sariciftci, L. Smilowitz, A. J. Heeger, and F. Wudl, Science 258, 1474 (1992).
http://dx.doi.org/10.1126/science.258.5087.1474
3.
3.Z. Bao and J. Locklin, Organic Field-Effect Transistors: Optical Science and Engineering Series (CRC, London, 2007).
4.
4.K. Ellmer, A. Klein, and B. Rech, Transparent Conductive Zinc Oxide (Springer, Berlin, 2008).
5.
5.M. Kurimoto, A. B. M. A. Ashrafi, M. Ebihara, K. Uesugi, H. Kumano, and I. Suemune, Phys. Status Solidi B 241, 635 (2004).
http://dx.doi.org/10.1002/pssb.200304286
6.
6.G. B. Murdoch, S. Hinds, E. H. Sargent, S. W. Tsang, L. Mordoukhovski, and Z. H. Lu, Appl. Phys. Lett. 94, 213301 (2009).
http://dx.doi.org/10.1063/1.3142423
7.
7.X. Jiang, F. L. Wong, M. K. Fung, and S. T. Lee, Appl. Phys. Lett. 83, 1875 (2003).
http://dx.doi.org/10.1063/1.1605805
8.
8.D. C. Olson, J. Piris, R. T. Collins, S. E. Shaheen, and D. S. Ginley, Thin Solid Films 496, 26 (2006).
http://dx.doi.org/10.1016/j.tsf.2005.08.179
9.
9.Q. Zhang, C. S. Dandeneau, X. Zhou, and G. Cao, Adv. Mater. 21, 4087 (2009).
http://dx.doi.org/10.1002/adma.200803827
10.
10.J. Liu, S. Wang, Z. Bian, M. Shan, and C. Huang, Appl. Phys. Lett. 94, 173107 (2009).
http://dx.doi.org/10.1063/1.3126955
11.
11.Z. Yin, S. Wu, X. Zhou, X. Huang, Q. Zhang, F. Boey, and H. Zhang, Small 6, 307 (2010).
http://dx.doi.org/10.1002/smll.200901968
12.
12.S. Günes, H. Neugebauer, and N. S. Sariciftci, Chem. Rev. 107, 1324 (2007).
http://dx.doi.org/10.1021/cr050149z
13.
13.J. H. Shin, J. Y. Song, and H. M. Park, Mater. Lett. 63, 145 (2009).
http://dx.doi.org/10.1016/j.matlet.2008.09.047
14.
14.Y. Yi, J. E. Lyon, M. M. Beerbom, and R. Schlaf, J. Appl. Phys. 100, 093719 (2006).
http://dx.doi.org/10.1063/1.2361089
15.
15.K. Jacobi, G. Zwicker, and A. Gutmann, Surf. Sci. 141, 109 (1984).
http://dx.doi.org/10.1016/0039-6028(84)90199-7
16.
16.R. T. Girard, O. Tjernberg, G. Chiaia, S. Söderholm, U. O. Karlsson, C. Wigren, H. Nylén, and I. Lindau, Surf. Sci. 373, 409 (1997).
http://dx.doi.org/10.1016/S0039-6028(96)01181-8
17.
17.J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, Handbook of X-Ray Photoelectron Spectroscopy (Physical Electronics, Minnesota, 1995).
18.
18.See supplementary material at http://dx.doi.org/10.1063/1.3531812 for detailed spectra obtained from ZnO film.[Supplementary Material]
19.
19.H. Lüth, Solid Surface, Interfaces, and Thin Films (Springer, Berlin, 2001).
20.
20.S. Krause, M. B. Casu, A. Scholl, and E. Umbach, New J. Phys. 10, 085001 (2008).
http://dx.doi.org/10.1088/1367-2630/10/8/085001
21.
21.L. F. J. Piper, A. R. H. Preston, A. Fedorov, S. W. Cho, A. DeMasi, and K. E. Smith, Phys. Rev. B 81, 233305 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.233305
22.
22.H. Ishii, D. Yoshimura, K. Sugiyama, S. Narioka, Y. Hamatani, I. Kawamoto, T. Miyazaki, Y. Ouchi, and K. Seki, Synth. Met. 85, 1389 (1997).
http://dx.doi.org/10.1016/S0379-6779(97)80286-X
23.
23.J. J. Uhlrich, D. C. Olson, J. W. P. Hsu, and T. F. Kuech, J. Vac. Sci. Technol. A 27, 328 (2009).
http://dx.doi.org/10.1116/1.3085723
24.
24.J. W. Chiou, J. C. Jan, H. M. Tsai, C. W. Bao, W. F. Pong, M. H. Tsai, I. H. Hong, R. Klauser, J. F. Lee, J. J. Wu, and S. C. Liu, Appl. Phys. Lett. 84, 3462 (2004).
http://dx.doi.org/10.1063/1.1737075
http://aip.metastore.ingenta.com/content/aip/journal/apl/97/26/10.1063/1.3531812
Loading
/content/aip/journal/apl/97/26/10.1063/1.3531812
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/97/26/10.1063/1.3531812
2010-12-28
2014-10-31

Abstract

The energy level alignments at the interface between tris(8-hydroxyquinoline) aluminum and ZnOnanowires and thin film were studied with in situx-ray and ultraviolet photoemission spectroscopy. The changes of work functions, highest occupied molecular orbitals, and core levels were measured with step-by-step deposition of on each ZnO substrate. Although both substrates show similar electronic structures, a larger interface dipole is induced at the interface between and ZnOnanowires. This results in the reduction of the electron injection barrier at the interface of nanowires. Thus, the ZnOnanowire substrate is expected to show better performance than that of ZnOfilm when used as a cathode. We discussed the different interface dipole formation at each interface.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/97/26/1.3531812.html;jsessionid=10lv620q1vlej.x-aip-live-02?itemId=/content/aip/journal/apl/97/26/10.1063/1.3531812&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Interface formation between tris(8-hydroxyquinoline) aluminum and ZnO nanowires and film
http://aip.metastore.ingenta.com/content/aip/journal/apl/97/26/10.1063/1.3531812
10.1063/1.3531812
SEARCH_EXPAND_ITEM