1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Coherent heteroepitaxy of on GaAs (111)B
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/97/26/10.1063/1.3532845
1.
1.L. Fu, C. L. Kane, and E. J. Mele, Phys. Rev. Lett. 98, 106803 (2007).
http://dx.doi.org/10.1103/PhysRevLett.98.106803
2.
2.X. -L. Qi, T. L. Hughes, and S. -C. Zhang, Phys. Rev. B 78, 195424 (2008).
http://dx.doi.org/10.1103/PhysRevB.78.195424
3.
3.H. Zhang, C. -X. Liu, X. -L. Qi, X. Dai, Z. Fang, and S. -C. Zhang, Nat. Phys. 5, 438 (2009).
http://dx.doi.org/10.1038/nphys1270
4.
4.Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Nat. Phys. 5, 398 (2009).
http://dx.doi.org/10.1038/nphys1274
5.
5.D. Hsieh, Y. Xia, D. Qian, L. Wray, J. H. Dil, F. Meier, J. Osterwalder, L. Patthey, J. G. Checkelsky, N. P. Ong, A. V. Fedorov, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Nature (London) 460, 1101 (2009).
http://dx.doi.org/10.1038/nature08234
6.
6.J. Navrátil, J. Horák, T. Plechacek, S. Kamba, P. Lostak, J. Dyck, W. Chen, and C. Uher, J. Solid State Chem. 177, 1704 (2004).
http://dx.doi.org/10.1016/j.jssc.2003.12.031
7.
7.Y. S. Hor, A. Richardella, P. Roushan, Y. Xia, J. G. Checkelsky, A. Yazdani, M. Z. Hasan, N. P. Ong, and R. J. Cava, Phys. Rev. B 79, 195208 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.195208
8.
8.G. Zhang, H. Qin, J. Teng, J. Guo, Q. Guo, X. Dai, Z. Fang, and K. Wu, Appl. Phys. Lett. 95, 053114 (2009).
http://dx.doi.org/10.1063/1.3200237
9.
9.H. D. Li, Z. Y. Wang, X. Kan, X. Guo, H. T. He, Z. Wang, J. N. Wang, T. L. Wong, N. Wang, and M. H. Xie, New J. Phys. 12, 103038 (2010).
http://dx.doi.org/10.1088/1367-2630/12/10/103038
10.
10.Y. Zhang, K. He, C. -Z. Chang, C. -L. Song, L. -L. Wang, X. Chen, J. -F. Jia, Z. Fang, X. Dai, W. -Y. Shan, S. -Q. Shen, Q. Niu, X. -L. Qi, S. -C. Zhang, X. -C. Ma, and Q. -K. Xue, Nat. Phys. 6, 584 (2010).
http://dx.doi.org/10.1038/nphys1689
11.
11.C. -L. Song, Y. -L. Wang, Y. -P. Jiang, Y. Zhang, C. -Z. Chang, L. Wang, K. He, X. Chen, J. -F. Jia, Y. Wang, Z. Fang, X. Dai, X. -C. Xie, X. -L. Qi, S. -C. Zhang, Q. -K. Xue, and X. Ma, Appl. Phys. Lett. 97, 143118 (2010).
http://dx.doi.org/10.1063/1.3494595
12.
12.J. Chen, H. J. Qin, F. Yang, J. Liu, T. Guan, F. M. Qu, G. H. Zhang, J. R. Shi, X. C. Xie, C. L. Yang, K. H. Wu, Y. Q. Li, and L. Lu, Phys. Rev. Lett. 105, 176602 (2010).
http://dx.doi.org/10.1103/PhysRevLett.105.176602
13.
13.S. Sugahara and M. Tanaka, J. Cryst. Growth 251, 317 (2003).
http://dx.doi.org/10.1016/S0022-0248(02)02280-7
14.
14.J. G. Checkelsky, Y. S. Hor, M. -H. Liu, D. -X. Qu, R. J. Cava, and N. P. Ong, Phys. Rev. Lett. 103, 246601 (2009).
http://dx.doi.org/10.1103/PhysRevLett.103.246601
15.
15.H. Peng, K. Lai, D. Kong, S. Meister, Y. Chen, X. -L. Qi, S. -C. Zhang, Z. -X. Shen, and Y. Cui, Nature Mater. 9, 225 (2010).
16.
16.J. M. Kikkawa and D. D. Awschalom, Phys. Rev. Lett. 80, 4313 (1998).
http://dx.doi.org/10.1103/PhysRevLett.80.4313
17.
17.X. -L. Qi, R. Li, J. Zang, and S. -C. Zhang, Science 323, 1184 (2009).
http://dx.doi.org/10.1126/science.1167747
18.
18.A. R. Akhmerov, J. Nilsson, and C. W. J. Beenakker, Phys. Rev. Lett. 102, 216404 (2009).
http://dx.doi.org/10.1103/PhysRevLett.102.216404
19.
19.International Ctr. for Diffraction Data, Powder Diffraction File 00-033-0214.
http://aip.metastore.ingenta.com/content/aip/journal/apl/97/26/10.1063/1.3532845
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) Streaky unreconstructed RHEED diffraction patterns such as this were usually observed along principal crystalline directions during and after the film growth. (b) AFM image of the surface of a film. Large terraces hundreds of nanometers across can be seen whose step heights are consistent with single QLs. The rms roughness of the film is .

Image of FIG. 2.

Click to view

FIG. 2.

X-ray diffraction of a thick film. The (003) family of reflections shows that the films are highly c-axis oriented. peaks are labeled from Ref. 19. Inset shows the rocking curve of the (006) reflection giving a full width at half maximum of 0.1°.

Image of FIG. 3.

Click to view

FIG. 3.

(a) HRTEM image of the heterostructure showing epitaxial growth of on the GaAs substrate without the formation of an amorphous layer at the interface. The distance (0.98 nm) between QLs is shown at the top right. Inset shows the diffraction pattern of the substrate. (b) Diffraction from the whole area in (a) showing both the GaAs and patterns. The c-axis film grows in registry with the hexagonal GaAs (111)B surface. The separation of the high index spots indicates that the film is relaxed in-plane.

Image of FIG. 4.

Click to view

FIG. 4.

(a) Normalized MR at 4.2 K in three films with varying thicknesses and carrier densities : , (lower solid curve); , (upper solid curve); and , (dashed curve). The normalized MR of the 3 nm film is divided by 10 and curves are offset for clarity. (b) Circles and squares show the TRKR measured with an in-plane magnetic field of 0.75 T at the interface in the 8 nm film described in (a). Triangles show the TRKR (divided by 10) from the GaAs substrate alone. Pump and probe wavelength is 810 nm.

Loading

Article metrics loading...

/content/aip/journal/apl/97/26/10.1063/1.3532845
2010-12-28
2014-04-19

Abstract

We report the heteroepitaxy of single crystalthin films of on the (111)B surface of GaAs by molecular beam epitaxy. We find that grows highly c-axis oriented, with an atomically sharp interface with the GaAs substrate. By optimizing the growth of a very thin GaAs buffer layer before growing the , we demonstrate the growth of thin films with atomically flat terraces over hundreds of nanometers. Initial time-resolved Kerr rotation measurements herald opportunities for probing coherent spin dynamics at the interface between a candidate topological insulator and a large class of GaAs-based heterostructures.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/97/26/1.3532845.html;jsessionid=24jil3u7l3ans.x-aip-live-02?itemId=/content/aip/journal/apl/97/26/10.1063/1.3532845&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Coherent heteroepitaxy of Bi2Se3 on GaAs (111)B
http://aip.metastore.ingenta.com/content/aip/journal/apl/97/26/10.1063/1.3532845
10.1063/1.3532845
SEARCH_EXPAND_ITEM