Skip to main content
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
1.L. Fu, C. L. Kane, and E. J. Mele, Phys. Rev. Lett. 98, 106803 (2007).
2.X. -L. Qi, T. L. Hughes, and S. -C. Zhang, Phys. Rev. B 78, 195424 (2008).
3.H. Zhang, C. -X. Liu, X. -L. Qi, X. Dai, Z. Fang, and S. -C. Zhang, Nat. Phys. 5, 438 (2009).
4.Y. Xia, D. Qian, D. Hsieh, L. Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Nat. Phys. 5, 398 (2009).
5.D. Hsieh, Y. Xia, D. Qian, L. Wray, J. H. Dil, F. Meier, J. Osterwalder, L. Patthey, J. G. Checkelsky, N. P. Ong, A. V. Fedorov, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan, Nature (London) 460, 1101 (2009).
6.J. Navrátil, J. Horák, T. Plechacek, S. Kamba, P. Lostak, J. Dyck, W. Chen, and C. Uher, J. Solid State Chem. 177, 1704 (2004).
7.Y. S. Hor, A. Richardella, P. Roushan, Y. Xia, J. G. Checkelsky, A. Yazdani, M. Z. Hasan, N. P. Ong, and R. J. Cava, Phys. Rev. B 79, 195208 (2009).
8.G. Zhang, H. Qin, J. Teng, J. Guo, Q. Guo, X. Dai, Z. Fang, and K. Wu, Appl. Phys. Lett. 95, 053114 (2009).
9.H. D. Li, Z. Y. Wang, X. Kan, X. Guo, H. T. He, Z. Wang, J. N. Wang, T. L. Wong, N. Wang, and M. H. Xie, New J. Phys. 12, 103038 (2010).
10.Y. Zhang, K. He, C. -Z. Chang, C. -L. Song, L. -L. Wang, X. Chen, J. -F. Jia, Z. Fang, X. Dai, W. -Y. Shan, S. -Q. Shen, Q. Niu, X. -L. Qi, S. -C. Zhang, X. -C. Ma, and Q. -K. Xue, Nat. Phys. 6, 584 (2010).
11.C. -L. Song, Y. -L. Wang, Y. -P. Jiang, Y. Zhang, C. -Z. Chang, L. Wang, K. He, X. Chen, J. -F. Jia, Y. Wang, Z. Fang, X. Dai, X. -C. Xie, X. -L. Qi, S. -C. Zhang, Q. -K. Xue, and X. Ma, Appl. Phys. Lett. 97, 143118 (2010).
12.J. Chen, H. J. Qin, F. Yang, J. Liu, T. Guan, F. M. Qu, G. H. Zhang, J. R. Shi, X. C. Xie, C. L. Yang, K. H. Wu, Y. Q. Li, and L. Lu, Phys. Rev. Lett. 105, 176602 (2010).
13.S. Sugahara and M. Tanaka, J. Cryst. Growth 251, 317 (2003).
14.J. G. Checkelsky, Y. S. Hor, M. -H. Liu, D. -X. Qu, R. J. Cava, and N. P. Ong, Phys. Rev. Lett. 103, 246601 (2009).
15.H. Peng, K. Lai, D. Kong, S. Meister, Y. Chen, X. -L. Qi, S. -C. Zhang, Z. -X. Shen, and Y. Cui, Nature Mater. 9, 225 (2010).
16.J. M. Kikkawa and D. D. Awschalom, Phys. Rev. Lett. 80, 4313 (1998).
17.X. -L. Qi, R. Li, J. Zang, and S. -C. Zhang, Science 323, 1184 (2009).
18.A. R. Akhmerov, J. Nilsson, and C. W. J. Beenakker, Phys. Rev. Lett. 102, 216404 (2009).
19.International Ctr. for Diffraction Data, Powder Diffraction File 00-033-0214.

Data & Media loading...


Article metrics loading...



We report the heteroepitaxy of single crystalthin films of on the (111)B surface of GaAs by molecular beam epitaxy. We find that grows highly c-axis oriented, with an atomically sharp interface with the GaAs substrate. By optimizing the growth of a very thin GaAs buffer layer before growing the , we demonstrate the growth of thin films with atomically flat terraces over hundreds of nanometers. Initial time-resolved Kerr rotation measurements herald opportunities for probing coherent spin dynamics at the interface between a candidate topological insulator and a large class of GaAs-based heterostructures.


Full text loading...


Access Key

  • FFree Content
  • OAOpen Access Content
  • SSubscribed Content
  • TFree Trial Content
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd