1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Influence of temperature-dependent mobilities on the nanosecond response of organic solar cells and photodetectors
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/97/6/10.1063/1.3473818
1.
1.P. Peumans, A. Yakimov, and S. R. Forrest, J. Appl. Phys. 93, 3693 (2003).
http://dx.doi.org/10.1063/1.1534621
2.
2.M. Punke, S. Valouch, S. W. Kettlitz, N. Christ, C. Gärtner, M. Gerken, and U. Lemmer, Appl. Phys. Lett. 91, 071118 (2007).
http://dx.doi.org/10.1063/1.2772198
3.
3.T. Rauch, M. Boberl, S. F. Tedde, J. Furst, M. V. Kovalenko, G. Hesser, U. Lemmer, W. Heiss, and O. Hayden, Nat. Photonics 3, 332 (2009).
http://dx.doi.org/10.1038/nphoton.2009.72
4.
4.N. S. Christ, S. W. Kettlitz, S. Valouch, S. Züfle, C. Gärtner, M. Punke, and U. Lemmer, J. Appl. Phys. 105, 104513 (2009).
http://dx.doi.org/10.1063/1.3130399
5.
5.I. Hwang, C. R. McNeill, and N. C. Greenham, J. Appl. Phys. 106, 094506 (2009).
http://dx.doi.org/10.1063/1.3247547
6.
6.V. D. Mihailetchi, H. Xie, B. de Boer, L. J. A. Koster, and P. W. M. Blom, Adv. Funct. Mater. 16, 699 (2006).
http://dx.doi.org/10.1002/adfm.200500420
7.
7.D. Chirvase, Z. Chiguvare, M. Knipper, J. Parisi, V. Dyakonov, and J. C. Hummelen, J. Appl. Phys. 93, 3376 (2003).
http://dx.doi.org/10.1063/1.1545162
8.
8.V. D. Mihailetchi, J. K. J. van Duren, P. W. M. Blom, J. C. Hummelen, R. A. J. Janssen, J. M. Kroon, M. T. Rispens, W. J. H. Verhees, and M. M. Wienk, Adv. Funct. Mater. 13, 43 (2003).
http://dx.doi.org/10.1002/adfm.200390004
9.
9.A. Pivrikas, N. S. Sariciftci, G. Juscaronka, and R. Österbacka, Prog. Photovoltaics 15, 677 (2007).
http://dx.doi.org/10.1002/pip.791
10.
10.A. J. Mozer and N. S. Sariciftci, Chem. Phys. Lett. 389, 438 (2004).
http://dx.doi.org/10.1016/j.cplett.2004.04.001
11.
11.V. Kazukauskas, M. Pranaitis, V. Cyras, L. Sicot, and F. Kajzar, Thin Solid Films 516, 8988 (2008).
http://dx.doi.org/10.1016/j.tsf.2007.11.076
12.
12.S. V. Novikov, D. H. Dunlap, V. M. Kenkre, P. E. Parris, and A. V. Vannikov, Phys. Rev. Lett. 81, 4472 (1998).
http://dx.doi.org/10.1103/PhysRevLett.81.4472
13.
13.R. U. A. Khan, D. Poplavskyy, T. Kreouzis, and D. D. C. Bradley, Phys. Rev. B 75, 035215 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.035215
14.
14.C. Tanase, E. J. Meijer, P. W. M. Blom, and D. M. de Leeuw, Phys. Rev. Lett. 91, 216601 (2003).
http://dx.doi.org/10.1103/PhysRevLett.91.216601
15.
15.C. Vijila, N. G. Meng, C. Z. Kuan, Z. Furong, and C. S. Jin, J. Polym. Sci. B 46, 1159 (2008).
http://dx.doi.org/10.1002/polb.21449
16.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/97/6/10.1063/1.3473818
Loading

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Measured transient pulse responses at different temperatures. The laser power density is and the bias voltage −5 V. The inset shows the number of measured charges per pulse, obtained from the time-integration of the pulse, for three bias voltages and the same power density.

Image of FIG. 2.

Click to view

FIG. 2.

Measured temperature-dependence of the pulse parameters for three bias voltages with a laser power density of : (a) maximum of the current density, (b) fall-time from 90% to 10% of the maximum.

Image of FIG. 3.

Click to view

FIG. 3.

Measured and simulated pulse responses at different temperatures, (a) absolute and (b) normalized representation. The laser power density is and the bias voltage −3 V. Used parameters for the CDM are: , , , , and .

Tables

Generic image for table

Click to view

Table I.

Measured and simulated current density maxima and pulse fall-times (from 90% to 10% of the maximum) at different temperatures with relative changes , and effective electron mobilities resulting from the used CDM parameter set as in Fig. 3.

Loading

Article metrics loading...

/content/aip/journal/apl/97/6/10.1063/1.3473818
2010-08-13
2014-04-17

Abstract

We investigate the impact of temperature on the transient current densitycharacteristics of organic solar cells and photodetectors. This is done by both experimental measurements and numerical simulations. In the process, we investigate the photoresponse of the device to an impinging laser pulse at different temperatures. By fitting the experimental results with the correlated disorder model we are able to quantify the influence of temperature on charge carriermobilities in organic bulk heterojunction solar cells. We determine an almost doubling of the electron mobility on increasing the temperature from 11 to .

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/97/6/1.3473818.html;jsessionid=p15751xm51d.x-aip-live-02?itemId=/content/aip/journal/apl/97/6/10.1063/1.3473818&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Influence of temperature-dependent mobilities on the nanosecond response of organic solar cells and photodetectors
http://aip.metastore.ingenta.com/content/aip/journal/apl/97/6/10.1063/1.3473818
10.1063/1.3473818
SEARCH_EXPAND_ITEM