1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Highly efficient, single-layer organic light-emitting devices based on a graded-composition emissive layer
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/97/8/10.1063/1.3481426
1.
1.C. Adachi, M. A. Baldo, S. R. Forrest, and M. E. Thompson, Appl. Phys. Lett. 77, 904 (2000).
http://dx.doi.org/10.1063/1.1306639
2.
2.M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, and S. R. Forrest, Nature (London) 395, 151 (1998).
http://dx.doi.org/10.1038/25954
3.
3.Y. Kawamura, K. Goushi, J. Brooks, J. J. Brown, H. Sasabe, and C. Adachi, Appl. Phys. Lett. 86, 071104 (2005).
http://dx.doi.org/10.1063/1.1862777
4.
4.T. Matsushima and C. Adachi, Appl. Phys. Lett. 92, 063306 (2008).
http://dx.doi.org/10.1063/1.2844891
5.
5.X. Zhou, D. S. Qin, M. Pfeiffer, J. Blochwitz-Nimoth, A. Werner, J. Drechsel, B. Maennig, and K. Leo, Appl. Phys. Lett. 81, 4070 (2002).
http://dx.doi.org/10.1063/1.1522495
6.
6.G. He, M. Pfeiffer, K. Leo, M. Hofmann, J. Birnstock, R. Pudzich, and J. Salbeck, Appl. Phys. Lett. 85, 3911 (2004).
http://dx.doi.org/10.1063/1.1812378
7.
7.J. Lee, J. -I. Lee, J. Y. Lee, and H. Y. Chu, Appl. Phys. Lett. 94, 193305 (2009).
http://dx.doi.org/10.1063/1.3136861
8.
8.J. Lee, C. Wu, S. Liu, C. Huang, and Y. Chang, Appl. Phys. Lett. 86, 103506 (2005).
http://dx.doi.org/10.1063/1.1879093
9.
9.M. E. Kondakova, T. D. Pawlik, R. H. Young, D. J. Giesen, D. Y. Kondakov, C. T. Brown, J. C. Deaton, J. R. Lenhard, and K. P. Klubek, J. Appl. Phys. 104, 094501 (2008).
http://dx.doi.org/10.1063/1.3000046
10.
10.C. Adachi, M. A. Baldo, M. E. Thompson, and S. R. Forrest, J. Appl. Phys. 90, 5048 (2001).
http://dx.doi.org/10.1063/1.1409582
11.
11.Z. W. Liu, M. G. Helander, Z. B. Wang, and Z. H. Lu, Appl. Phys. Lett. 94, 113305 (2009).
http://dx.doi.org/10.1063/1.3099903
12.
12.W. S. Jeon, T. J. Park, K. H. Kim, R. Pode, J. Jang, and J. H. Kwon, Org. Electron. 11, 179 (2010).
http://dx.doi.org/10.1016/j.orgel.2009.10.010
13.
13.J. Meyer, S. Hamwi, T. Bulow H. -H. Johannes, T. Riedl, and W. Kowalsky, Appl. Phys. Lett. 91, 113506 (2007).
http://dx.doi.org/10.1063/1.2784176
14.
14.T. Kim and D. Moon, Synth. Met. 160, 675 (2010).
http://dx.doi.org/10.1016/j.synthmet.2009.12.027
15.
15.M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson, and S. R. Forrest, Appl. Phys. Lett. 75, 4 (1999).
http://dx.doi.org/10.1063/1.124258
16.
16.S. Watanabe, N. Ide, and J. Kido, Jpn. J. Appl. Phys., Part 1 46, 1186 (2007).
http://dx.doi.org/10.1143/JJAP.46.1186
17.
17.A. B. Chwang, R. C. Kwong, and J. J. Brown, Appl. Phys. Lett. 80, 725 (2002).
http://dx.doi.org/10.1063/1.1446992
18.
18.M. A. Baldo, C. Adachi, and S. R. Forrest, Phys. Rev. B 62, 10967 (2000).
http://dx.doi.org/10.1103/PhysRevB.62.10967
19.
19.L. S. Hung and C. H. Chen, Mater. Sci. Eng. R. 39, 143 (2002).
http://dx.doi.org/10.1016/S0927-796X(02)00093-1
20.
20.J. Kang, S. Lee, H. Park, W. Jeong, K. Yoo, Y. Park, and J. Kim, Appl. Phys. Lett. 90, 223508 (2007).
http://dx.doi.org/10.1063/1.2745224
21.
21.S. Naka, H. Okada, H. Onnagawa, and T. Tsutsui, Appl. Phys. Lett. 76, 197 (2000).
http://dx.doi.org/10.1063/1.125701
22.
22.T. Hwu, T. Tsai, W. Hung, S. Chang, Y. Chi, M. Chen, C. Wu, K. Wong, and L. Chia, Chem. Commun. (Cambridge) 2008, 4956.
http://dx.doi.org/10.1039/b807954d
23.
23.S. Olthof, R. Meerheim, M. Schober, and K. Leo, Phys. Rev. B 79, 245308 (2009).
http://dx.doi.org/10.1103/PhysRevB.79.245308
24.
24.R. J. Holmes, B. W. D'Andrade, S. R. Forrest, X. Ren, J. Li, and M. E. Thompson, Appl. Phys. Lett. 83, 3818 (2003).
http://dx.doi.org/10.1063/1.1624639
25.
25.N. C. Giebink and S. R. Forrest, Phys. Rev. B 77, 235215 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.235215
26.
26.J. Kalinowski, W. Stampor, J. Mezyk, M. Cocchi, D. Virgili, V. Fattori, and P. Di Marco, Phys. Rev. B 66, 235321 (2002).
http://dx.doi.org/10.1103/PhysRevB.66.235321
27.
27.J. Kalinowski, W. Stampor, J. Szmytkowski, D. Virgili, M. Cocchi, V. Fattori, and C. Sabatini, Phys. Rev. B 74, 085316 (2006).
http://dx.doi.org/10.1103/PhysRevB.74.085316
http://aip.metastore.ingenta.com/content/aip/journal/apl/97/8/10.1063/1.3481426
Loading
/content/aip/journal/apl/97/8/10.1063/1.3481426
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/97/8/10.1063/1.3481426
2010-08-27
2014-11-24

Abstract

We demonstrate highly efficient electrophosphorescence from devices comprising a single organic layer. High efficiency is realized by combining both hole- and electron-transporting host materials (HTMs and ETMs, respectively) into a single, graded-composition emissive layer with the green phosphorescent emitter -tris(2-phenylpyridine) iridium (III). The composition is continuously graded to realize nearly 100% HTM at the anode and nearly 100% ETM at the cathode. Peak external quantum and power efficiencies of and are realized at a luminance level of .

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/97/8/1.3481426.html;jsessionid=bl2nkmjnkli3d.x-aip-live-03?itemId=/content/aip/journal/apl/97/8/10.1063/1.3481426&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Highly efficient, single-layer organic light-emitting devices based on a graded-composition emissive layer
http://aip.metastore.ingenta.com/content/aip/journal/apl/97/8/10.1063/1.3481426
10.1063/1.3481426
SEARCH_EXPAND_ITEM