1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Organic vapor jet printing at micrometer resolution using microfluidic nozzle arrays
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/98/1/10.1063/1.3536675
1.
1.G. Gu and S. R. Forrest, IEEE J. Sel. Top. Quantum Electron. 4, 83 (1998).
http://dx.doi.org/10.1109/2944.669473
2.
2.M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson, and S. R. Forrest, Appl. Phys. Lett. 75, 4 (1999).
http://dx.doi.org/10.1063/1.124258
3.
3.E. Menard, M. A. Meitl, Y. G. Sun, J. U. Park, D. J. L. Shir, Y. S. Nam, S. Jeon, and J. A. Rogers, Chem. Rev. 107, 1117 (2007).
http://dx.doi.org/10.1021/cr050139y
4.
4.T. R. Hebner, C. C. Wu, D. Marcy, M. H. Lu, and J. C. Sturm, Appl. Phys. Lett. 72, 519 (1998).
http://dx.doi.org/10.1063/1.120807
5.
5.K. H. Yim, Z. J. Zheng, Z. Q. Liang, R. H. Friend, W. T. S. Huck, and J. S. Kim, Adv. Funct. Mater. 18, 1012 (2008).
http://dx.doi.org/10.1002/adfm.200701321
6.
6.J. L. Chen, V. Leblanc, S. H. Kang, P. J. Benning, D. Schut, M. A. Baldo, M. A. Schmidt, and V. Bulovic, Adv. Funct. Mater. 17, 2722 (2007).
http://dx.doi.org/10.1002/adfm.200601144
7.
7.M. Shtein, P. Peumans, J. B. Benziger, and S. R. Forrest, Adv. Mater. 16, 1615 (2004).
http://dx.doi.org/10.1002/adma.200400260
8.
8.Y. R. Sun, M. Shtein, and S. R. Forrest, Appl. Phys. Lett. 86, 113504 (2005).
http://dx.doi.org/10.1063/1.1884265
9.
9.M. S. Arnold, G. J. McGraw, S. R. Forrest, and R. R. Lunt, Appl. Phys. Lett. 92, 053301 (2008).
http://dx.doi.org/10.1063/1.2838457
10.
10.D. B. Lee, J. Appl. Phys. 40, 4569 (1969).
http://dx.doi.org/10.1063/1.1657233
11.
11.C. Iliescu, F. E. H. Tay, and J. M. Miao, Sens. Actuators, A 133, 395 (2007).
http://dx.doi.org/10.1016/j.sna.2006.06.044
12.
12.T. Rogers and J. Kowal, Sens. Actuators, A 46, 113 (1995).
http://dx.doi.org/10.1016/0924-4247(94)00872-F
13.
13.G. A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows (Oxford University Press, Oxford, 1994).
14.
14.R. P. Nance, D. B. Hash, and H. A. Hassan, J. Thermophys. Heat Transfer 12, 447 (1998).
http://dx.doi.org/10.2514/2.6358
15.
15.N. C. Giebink and S. R. Forrest, Phys. Rev. B 77, 235215 (2008).
http://dx.doi.org/10.1103/PhysRevB.77.235215
http://aip.metastore.ingenta.com/content/aip/journal/apl/98/1/10.1063/1.3536675
Loading
/content/aip/journal/apl/98/1/10.1063/1.3536675
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/98/1/10.1063/1.3536675
2011-01-06
2014-10-23

Abstract

Organic vapor jet printing with a print head comprised of a microfluidic Si nozzle array is used to deposit parallel lines of an organic semiconductorthin film with a line width of and edge resolution of . Line width and feature size are functions of process conditions, depending strongly on nozzle-to-substrate separation distance. Experimental results are accurately characterized by a direct simulation Monte Carlo model. The model suggests that feature sizes of are attainable by this printing process. The ability of the print head to codeposit dopedfilms is demonstrated by growing the emissive layer of a green phosphorescent organic light emitting diode sandwiched between hole and electron transport layers deposited by vacuum thermal evaporation. This device had an external quantum efficiency of , comparable to a similar device entirely grown by vacuum thermal evaporation.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/98/1/1.3536675.html;jsessionid=b8c1mj74e6ga.x-aip-live-06?itemId=/content/aip/journal/apl/98/1/10.1063/1.3536675&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Organic vapor jet printing at micrometer resolution using microfluidic nozzle arrays
http://aip.metastore.ingenta.com/content/aip/journal/apl/98/1/10.1063/1.3536675
10.1063/1.3536675
SEARCH_EXPAND_ITEM