1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Molecular control of pentacene/ZnO photoinduced charge transfer
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/98/10/10.1063/1.3560481
1.
1.R. M. Metzger, J. Mater. Chem. 18, 4364 (2008).
http://dx.doi.org/10.1039/b802804b
2.
2.S. Kobayashi, T. Nishikawa, T. Takenobu, S. Mori, T. Shimoda, T. Mitani, H. Shimotani, N. Yoshimoto, S. Ogawa, and Y. Iwasa, Nature Mater. 3, 317 (2004).
http://dx.doi.org/10.1038/nmat1105
3.
3.H. L. Yip, S. K. Hau, N. S. Baek, H. Ma, and A. K.-Y. Jen, Adv. Mater. 20, 2376 (2008).
http://dx.doi.org/10.1002/adma.200703050
4.
4.N. Koch, ChemPhysChem 8, 1438 (2007).
http://dx.doi.org/10.1002/cphc.200700177
5.
5.W. J. E. Beek, M. M. Wienk, and R. A. J. Janssen, Adv. Mater. 16, 1009 (2004).
http://dx.doi.org/10.1002/adma.200306659
6.
6.S. D. Oosterhout, M. M. Wienk, S. S. van Bavel, R. Thiedmann, L. J. A. Koster, J. Gilot, J. Loos, V. Schmidt, and R. A. J. Janssen, Nature Mater. 8, 818 (2009).
http://dx.doi.org/10.1038/nmat2533
7.
7.M. S. White, D. C. Olson, S. E. Shaheen, N. Kopidakis, and D. S. Ginley, Appl. Phys. Lett. 89, 143517 (2006).
http://dx.doi.org/10.1063/1.2359579
8.
8.D. C. Olson, Y. J. Lee, M. S. White, N. Kopidakis, S. E. Shaeen, D. S. Ginley, J. A. Voigt, and J. W. P. Hsu, J. Phys. Chem. C 112, 9544 (2008).
http://dx.doi.org/10.1021/jp802626u
9.
9.N. S. Pesika, Z. Hu, K. J. Stebe, and P. C. Searson, J. Phys. Chem. B 106, 6985 (2002).
http://dx.doi.org/10.1021/jp0144606
10.
10.S. Bubel, D. Nikolova, N. Mechau, and H. Hahn, J. Appl. Phys. 105, 064514 (2009).
http://dx.doi.org/10.1063/1.3097754
11.
11.B. Park, P. Paoprasert, I. In, J. Zwickey, P. E. Colavita, R. J. Hamers, P. Gopalan, and P. G. Evans, Adv. Mater. 19, 4353 (2007).
http://dx.doi.org/10.1002/adma.200602875
12.
12.A. Wood, M. Giersig, M. Hilgendorff, A. Vilas-Campos, L. M. Liz-Marzan, and P. Mulvaney, Aust. J. Chem. 56, 1051 (2003).
http://dx.doi.org/10.1071/CH03120
13.
13.E. A. Meulenkamp, J. Phys. Chem. B 102, 5566 (1998).
http://dx.doi.org/10.1021/jp980730h
14.
14.J. Kagan, S. K. Arora, and A. Üstünol, J. Org. Chem. 48, 4076 (1983).
http://dx.doi.org/10.1021/jo00170a040
15.
15.A. Lenz, L. Selegård, F. Söderlind, A. Larsson, P. O. Holtz, K. Uvdal, L. Ojamäe, and P. -O. Käll, J. Phys. Chem. C 113, 17332 (2009).
http://dx.doi.org/10.1021/jp905481v
16.
16.B. -N. Park, S. Seo, and P. G. Evans, J. Phys. D: Appl. Phys. 40, 3506 (2007).
http://dx.doi.org/10.1088/0022-3727/40/11/037
17.
17.B. N. Pal, P. Trottman, J. Sun, and H. E. Katz, Adv. Funct. Mater. 18, 1832 (2008).
http://dx.doi.org/10.1002/adfm.200701430
18.
18.H. Marciniak, M. Fiebig, M. Huth, S. Schiefer, B. Nickel, F. Selmaier, and S. Lochbrunner, Phys. Rev. Lett. 99, 176402 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.176402
19.
19.D. Segal, A. Nitzan, W. B. Davis, M. R. Wasielewski, and M. A. Ratner, J. Phys. Chem. B 104, 3817 (2000).
http://dx.doi.org/10.1021/jp993260f
20.
20.W. B. Davis, W. A. Svec, M. A. Ratner, and M. R. Wasielewski, Nature (London) 396, 60 (1998).
http://dx.doi.org/10.1038/25090
21.
21.G. Peng, M. Strange, K. S. Thygesen, and M. Mavrikakis, J. Phys. Chem. C 113, 20967 (2009).
http://dx.doi.org/10.1021/jp9084603
22.
22.A. Salomon, D. Cahen, S. Lindsay, J. Tomfohr, V. B. Engelkes, and C. D. Frisbie, Adv. Mater. 15, 1881 (2003).
http://dx.doi.org/10.1002/adma.200306091
23.
23.S. -L. Ren, S. -R. Yang, J. -Q. Wang, W. -M. Liu, and Y. -P. Zhao, Chem. Mater. 16, 428 (2004).
http://dx.doi.org/10.1021/cm0345669
24.
24.S. Hotta and K. Waragai, J. Mater. Chem. 1, 835 (1991).
http://dx.doi.org/10.1039/jm9910100835
25.
25.A. -M. Andringa, M. -J. Spijkman, E. C. P. Smits, S. G. J. Mathijssen, P. A. van Hal, S. Setayesh, N. P. Willard, O. V. Borshchev, S. A. Ponomarenko, P. W. M. Blom, and D. M. de Leeuw, Org. Electron. 11, 895 (2010).
http://dx.doi.org/10.1016/j.orgel.2010.02.007
26.
26.K. -J. Baeg, Y. -Y. Noh, H. Sirringhaus, and D. -Y. Kim, Adv. Funct. Mater. 20, 224 (2010).
http://dx.doi.org/10.1002/adfm.200901677
http://aip.metastore.ingenta.com/content/aip/journal/apl/98/10/10.1063/1.3560481
Loading
/content/aip/journal/apl/98/10/10.1063/1.3560481
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/98/10/10.1063/1.3560481
2011-03-09
2014-10-22

Abstract

Photoinduced charge transfer modifies the device properties of illuminated pentacene field effect transistors(FETs) incorporating ZnOquantum dots at the gate insulator/pentacene interface. The transferred charge is trapped on electronic states associated with the ZnOquantum dots, with a steady state population approximately proportional to the rate of organic-inorganic charge transfer. Trapped charge shifts the threshold voltage of the FETs, providing the means to evaluate the rate of organic/inorganic charge transfer and the effects of interface modification. Monolayers of the wide-gap alkane stearic acid and the conjugated oligomer terthiophene attached to the ZnO suppress or permit charge transfer, respectively.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/98/10/1.3560481.html;jsessionid=4wniid9ucknph.x-aip-live-03?itemId=/content/aip/journal/apl/98/10/10.1063/1.3560481&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Molecular control of pentacene/ZnO photoinduced charge transfer
http://aip.metastore.ingenta.com/content/aip/journal/apl/98/10/10.1063/1.3560481
10.1063/1.3560481
SEARCH_EXPAND_ITEM