1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
DNA biopolymer conductive cladding for polymer electro-optic waveguide modulators
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/98/10/10.1063/1.3562953
1.
1.Y. Kawabe, L. Wang, T. Koyama, S. Horinouchi, and N. Ogata, Proc. SPIE 4106, 369 (2000).
http://dx.doi.org/10.1117/12.408526
2.
2.L. Wang, J. Yoshida, N. Ogata, S. Sasaki, and T. Kajiyama, Chem. Mater. 13, 1273 (2001).
http://dx.doi.org/10.1021/cm000869g
3.
3.J. A. Hagen, W. Li, A. J. Steckl, and J. G. Grote, Appl. Phys. Lett. 88, 171109 (2006).
http://dx.doi.org/10.1063/1.2197973
4.
4.F. Ouchen, P. P. Yaney, and J. G. Grote, Proc. SPIE 7403, 74030F (2009).
http://dx.doi.org/10.1117/12.831234
5.
5.C. M. Bartsch, G. Subramanyam, J. G. Grote, K. M. Singh, R. R. Naik, B. Singh, and N. S. Sariciftci, Proc. SPIE 6646, 66460K (2007).
http://dx.doi.org/10.1117/12.732033
6.
6.E. M. Heckman, J. G. Grote, F. Kenneth Hopkins, and P. P. Yaney, Appl. Phys. Lett. 89, 181116 (2006).
http://dx.doi.org/10.1063/1.2378400
7.
7.J. G. Grote, E. M. Heckman, J. A. Hagen, P. P. Yaney, D. E. Diggs, G. Subramanyam, R. L. Nelson, J. S. Zetts, D. Y. Zang, B. Singh, N. S. Sariciftci, and F. K. Hopkins, Proc. SPIE 6117, 61170J (2006).
http://dx.doi.org/10.1117/12.660421
8.
8.M. Stroscio and M. Dutta, Proc. IEEE 93, 1772 (2005).
http://dx.doi.org/10.1109/JPROC.2005.853543
9.
9.G. Subramanyam, E. Heckman, J. Grote, and F. Hopkins, IEEE Microw. Wirel. Compon. Lett. 15, 232 (2005).
http://dx.doi.org/10.1109/LMWC.2005.845705
10.
10.J. G. Grote, J. S. Zetts, R. L. Nelson, F. K. Hopkins, C. H. Zhang, L. R. Dalton, and W. H. Steier, Proc. SPIE 4114, 101 (2000).
http://dx.doi.org/10.1117/12.408544
11.
11.J. G. Grote, J. S. Zetts, R. L. Nelson, F. K. Hopkins, L. R. Dalton, C. Zhang, and W. H. Steier, Opt. Eng. 40, 2464 (2001).
http://dx.doi.org/10.1117/1.1412227
12.
12.J. G. Grote, J. A. Hagen, J. S. Zetts, R. L. Nelson, D. E. Diggs, M. O. Stone, P. P. Yaney, E. M. Heckman, C. Zhang, W. H. Steier, A. K.-Y. Jen, L. R. Dalton, N. Ogata, M. J. Curley, S. J. Clarson, and F. K. Hopkins, J. Phys. Chem. B 108, 8584 (2004).
http://dx.doi.org/10.1021/jp038056d
13.
13.J. A. Hagen, J. G. Grote, N. Ogata, J. S. Zetts, R. L. Nelson, D. E. Diggs, F. K. Hopkins, P. P. Yaney, L. R. Dalton, and S. J. Clarson, Proc. SPIE 5351, 77 (2004).
http://dx.doi.org/10.1117/12.533171
14.
14.C. Zhang and L. R. Dalton, Chem. Mater. 13, 3043 (2001).
http://dx.doi.org/10.1021/cm010463j
15.
15.Y. -H. Kuo, J. Luo, W. H. Steier, and A. K.-Y. Jen, IEEE Photonics Technol. Lett. 18, 175 (2006).
http://dx.doi.org/10.1109/LPT.2005.861632
16.
16.E. M. Heckman, P. P. Yaney, J. G. Grote, and F. K. Hopkins, Proc. SPIE 5934, 593408 (2005).
http://dx.doi.org/10.1117/12.614455
17.
17.E. M. Heckman, J. A. Hagen, P. P. Yaney, J. G. Grote, and F. K. Hopkins, Appl. Phys. Lett. 87, 211115 (2005).
http://dx.doi.org/10.1063/1.2135205
18.
18.M. J. Alam and D. C. Cameron, J. Sol-Gel Sci. Technol. 25, 137 (2002).
http://dx.doi.org/10.1023/A:1019912312654
19.
19.P. P. Yaney, E. M. Heckman, and J. G. Grote, Proc. SPIE 6646, 664605 (2007).
http://dx.doi.org/10.1117/12.742127
20.
20.P. P. Yaney, F. Ouchen, and J. G. Grote, Proc. SPIE 7403, 74030M (2009).
http://dx.doi.org/10.1117/12.829129
21.
21.E. M. Heckman, J. G. Grote, P. P. Yaney, and F. K. Hopkins, Proc. SPIE 5516, 47 (2004).
http://dx.doi.org/10.1117/12.563071
22.
22.M. -C. Oh, H. Zhang, C. Zhang, H. Erlig, Y. Chang, B. Tsap, D. Chang, A. Szep, W. H. Steier, H. R. Fetterman, and L. R. Dalton, IEEE J. Quantum Electron. 7, 826 (2001).
http://dx.doi.org/10.1109/2944.979344
23.
23.C. C. Teng and H. T. Man, Appl. Phys. Lett. 56, 1734 (1990).
http://dx.doi.org/10.1063/1.103107
24.
24.C. T. DeRose, Ph.D. dissertation, University of AZ College of Optical Sciences, 2009.
25.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/98/10/10.1063/1.3562953
Loading
/content/aip/journal/apl/98/10/10.1063/1.3562953
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/98/10/10.1063/1.3562953
2011-03-10
2014-09-20

Abstract

A deoxyribonucleic acid (DNA)biopolymer has been studied for use as a conductivecladding layer in polymer electro-optic (EO) waveguide modulators due to its low optical loss and high electrical conductivity relative to its inorganic polymer counterparts. Electric field contact poling measurements using a DNAbiopolymercladding layer with an amorphous polycarbonate/chromophore (APC/CLD1) guest-host system core layer have been made and compared to a UV15 cladding layer. Using the EO coefficient of APC/CLD1 with no cladding layer as a baseline, the DNAbiopolymercladding layer yielded relative poling efficiencies of 96% while the UV15 poling efficiencies were only 51%.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/98/10/1.3562953.html;jsessionid=10iffh7511zr4.x-aip-live-02?itemId=/content/aip/journal/apl/98/10/10.1063/1.3562953&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: DNA biopolymer conductive cladding for polymer electro-optic waveguide modulators
http://aip.metastore.ingenta.com/content/aip/journal/apl/98/10/10.1063/1.3562953
10.1063/1.3562953
SEARCH_EXPAND_ITEM