1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
oa
Picosecond time-resolved x-ray refectivity of a laser-heated amorphous carbon film
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/98/10/10.1063/1.3562967
1.
1.A. Gibaud and S. Hazra, Curr. Sci. 78, 1467 (2000).
2.
2.M. Gonzalez-Silveira, J. Rodriguez-Viejo, M. T. Clavaguera-Mora, T. Bigault, and J. L. Labar, Phys. Rev. B 75, 075419 (2007).
http://dx.doi.org/10.1103/PhysRevB.75.075419
3.
3.A. G. Richter, M. K. Durbin, C. J. Yu, and L. Dutta, Langmuir 14, 5980 (1998).
http://dx.doi.org/10.1021/la980371h
4.
4.T. Matsushita, E. Arakawa, Y. Niwa, Y. Inada, T. Hatano, T. Harada, Y. Higashi, K. Hirano, K. Sakurai, M. Ishii, and M. Nomura, Eur. Phys. J. Spec. Top. 167, 113 (2009).
http://dx.doi.org/10.1140/epjst/e2009-00945-4
5.
5.M. Wulff, F. Schotte, G. Naylor, D. Bourgeois, K. Moffat, and G. Mourou, Nucl. Instrum. Methods Phys. Res. A 398, 69 (1997).
http://dx.doi.org/10.1016/S0168-9002(96)01226-0
6.
6.M. Störmer, C. Horstmann, F. Siewert, F. Scholze M. Krumrey, F. Hertlein, M. Matiaske, J. Wiesmann, and J. Gaudin, AIP Conf. Proc. 1234, 756 (2010).
http://dx.doi.org/10.1063/1.3463321
7.
7.R. Koter, M. Weise, A. Hertwig, U. Beck, and J. Kruger, J. Optoelectron. Adv. Mater. 12, 663 (2010).
8.
8.T. V. Kononenko, S. M. Pimenov, V. V. Kononenko, E. V. Zavedeev, V. I. Konov, G. Dumitru, and V. Romano, Appl. Phys. A: Mater. Sci. Process. 79, 543 (2004).
http://dx.doi.org/10.1007/s00339-003-2356-5
9.
9.J. Robertson, Mater. Sci. Eng. R. 37, 129 (2002).
http://dx.doi.org/10.1016/S0927-796X(02)00005-0
10.
10.A. C. Ferrari, B. Kleinsorge, N. A. Morrison, A. Hart, V. Stolojan, and J. Robertson, J. Appl. Phys. 85, 7191 (1999).
http://dx.doi.org/10.1063/1.370531
11.
11.D. K. G. de Boer, A. J. G. Leenaers, and W. W. van den Hoogenhof, J. Phys. III 4, 1559 (1994).
http://dx.doi.org/10.1051/jp3:1994222
12.
12.A. Cavalleri, C. W. Siders, F. L. H. Brown, D. M. Leitner, C. Toth, J. A. Squier, C. P. J. Barty, K. R. Wilson, K. Sokolowski-Tinten, M. H. von Hoegen, D. von der Luinde, and M. Kammler, Phys. Rev. Lett. 85, 586 (2000).
http://dx.doi.org/10.1103/PhysRevLett.85.586
13.
13.C. Thomsen, H. T. Grahn, H. J. Maris, and J. Tauc, Phys. Rev. B 34, 4129 (1986).
http://dx.doi.org/10.1103/PhysRevB.34.4129
14.
14.A. J. Bullen, K. E. O’Hara, D. G. Cahill, O. Monteiro, and A. von Keudell, J. Appl. Phys. 88, 6317 (2000).
http://dx.doi.org/10.1063/1.1314301
15.
15.A. A. Balandin, M. Shamsa, W. L. Liu, C. Casiraghi, and A. C. Ferrari, Appl. Phys. Lett. 93, 043115 (2008).
http://dx.doi.org/10.1063/1.2957041
16.
16.R. F. Wood and G. E. Giles, Phys. Rev. B 23, 2923 (1981).
http://dx.doi.org/10.1103/PhysRevB.23.2923
17.
17.A. Champi, R. G. Lacerda, G. A. Viana, and F. C. Marques, J. Non-Cryst. Solids 338–340, 499 (2004).
http://dx.doi.org/10.1016/j.jnoncrysol.2004.03.028
18.
18.M. Hakovirta, J. E. Vuorinen, X. M. He, M. Nastasi, and R. B. Schwarz, Appl. Phys. Lett. 77, 2340 (2000).
http://dx.doi.org/10.1063/1.1290387
19.
19.S. Cho, I. Chasiotis, T. A. Friedmann, and J. P. Sullivan, J. Micromech. Microeng. 15, 728 (2005).
http://dx.doi.org/10.1088/0960-1317/15/4/009
20.
20.M. Shamsa, W. L. Liu, A. A. Balandin, C. Casiraghi, W. I. Milne, and A. C. Ferrari, Appl. Phys. Lett. 89, 161921 (2006).
http://dx.doi.org/10.1063/1.2362601
21.
21.J. F. Young and H. M. van Driel, Phys. Rev. B 26, 2147 (1982).
http://dx.doi.org/10.1103/PhysRevB.26.2147
22.
22.P. M. Fauchet and A. E. Siegman, Appl. Phys. Lett. 40, 824 (1982).
http://dx.doi.org/10.1063/1.93274
http://aip.metastore.ingenta.com/content/aip/journal/apl/98/10/10.1063/1.3562967
Loading
/content/aip/journal/apl/98/10/10.1063/1.3562967
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/98/10/10.1063/1.3562967
2011-03-10
2014-08-30

Abstract

We demonstrate thin filmx-rayreflectivity measurements with picosecond time resolution. Amorphous carbon films with a thickness of 46 nm were excited with laser pulses characterized by 100 fs duration, a wavelength of 800 nm, and a fluence of . The laser-induced stress caused a rapid expansion of the thin film followed by a relaxation of the film thickness as heat diffused into the silicon substrate. We were able to measure changes in film thickness as small as 0.2 nm. The relaxation dynamics are consistent with a model which accounts for carrier-enhanced substrate heat diffusivity.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/98/10/1.3562967.html;jsessionid=441qdot7660q5.x-aip-live-02?itemId=/content/aip/journal/apl/98/10/10.1063/1.3562967&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Picosecond time-resolved x-ray refectivity of a laser-heated amorphous carbon film
http://aip.metastore.ingenta.com/content/aip/journal/apl/98/10/10.1063/1.3562967
10.1063/1.3562967
SEARCH_EXPAND_ITEM