1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Electrolyte-gated organic field-effect transistors for sensing applications
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/98/15/10.1063/1.3581882
1.
1.C. Bartic, B. Palan, A. Campitelli, and G. Borghs, Sens. Actuators B 83, 115 (2002).
http://dx.doi.org/10.1016/S0925-4005(01)01053-X
2.
2.J. Mabeck and G. Malliaras, Anal. Bioanal. Chem. 384, 343 (2006).
http://dx.doi.org/10.1007/s00216-005-3390-2
3.
3.Organic Semiconductors in Sensor Applications, edited by D. A. Bernards, R. M. Owens, and G. G. Malliaras (Springer, Berlin, Heidelberg, 2008).
http://dx.doi.org/10.1007/978-3-540-76314-7
4.
4.M. E. Roberts, S. C. B. Mannsfeld, N. Queraltó, C. Reese, J. Locklin, W. Knoll, and Z. Bao, Proc. Natl. Acad. Sci. U.S.A. 105, 12134 (2008).
http://dx.doi.org/10.1073/pnas.0802105105
5.
5.T. Someya, A. Dodabalapur, J. Huang, K. C. See, and H. E. Katz, Adv. Mater. (Weinheim, Ger.) 22, 3799 (2010).
http://dx.doi.org/10.1002/adma.200902760
6.
6.M. E. Roberts, S. C. B. Mannsfeld, M. L. Tang, and Z. Bao, Chem. Mater. 20, 7332 (2008).
http://dx.doi.org/10.1021/cm802530x
7.
7.B. Stadlober, M. Zirkl, M. Beutl, G. Leising, S. Bauer-Gogonea, and S. Bauer, Appl. Phys. Lett. 86, 242902 (2005).
http://dx.doi.org/10.1063/1.1946190
8.
8.E. C. P. Smits, S. G. J. Mathijssen, P. A. van Hal, S. Setayesh, T. C. T. Geuns, K. A. H. A. Mutsaers, E. Cantatore, H. J. Wondergem, O. Werzer, R. Resel, M. Kemerink, S. Kirchmeyer, A. M. Muzafarov, S. A. Ponomarenko, B. de Boer, P. W. M. Blom, and D. M. de Leeuw, Nature (London) 455, 956 (2008).
http://dx.doi.org/10.1038/nature07320
9.
9.L. Kergoat, L. Herlogsson, D. Braga, B. Piro, M. -C. Pham, X. Crispin, M. Berggren, and G. Horowitz, Adv. Mater. (Weinheim, Ger.) 22, 2565 (2010).
http://dx.doi.org/10.1002/adma.200904163
10.
10.H. Shimotani, H. Asanuma, and Y. Iwasa, Jpn. J. Appl. Phys., Part 1 46, 3613 (2007).
http://dx.doi.org/10.1143/JJAP.46.3613
11.
11.M. J. Panzer, C. R. Newman, and C. D. Frisbie, Appl. Phys. Lett. 86, 103503 (2005).
http://dx.doi.org/10.1063/1.1880434
12.
12.J. Kong, N. R. Franklin, C. Zhou, M. G. Chapline, S. Peng, K. Cho, and H. Dai, Science 287, 622 (2000).
http://dx.doi.org/10.1126/science.287.5453.622
13.
13.H. Kawarada, Y. Araki, T. Sakai, T. Ogawa, and H. Umezawa, Phys. Status Solidi A 185, 79 (2001).
http://dx.doi.org/10.1002/1521-396X(200105)185:1<79::AID-PSSA79>3.0.CO;2-8
14.
14.M. Dankerl, M. V. Hauf, A. Lippert, L. H. Hess, S. Birner, I. D. Sharp, A. Mahmood, P. Mallet, J. -Y. Veuillen, M. Stutzmann, and J. A. Garrido, Adv. Funct. Mater. 20, 3117 (2010).
http://dx.doi.org/10.1002/adfm.201000724
15.
15.A. Bard and I. Faulkner, Electrochemical Methods: Fundamentals and Applications (Wiley, New York, 2001).
16.
16.J. A. Garrido, S. Nowy, A. Härtl, and M. Stutzmann, Langmuir 24, 3897 (2008).
http://dx.doi.org/10.1021/la703413y
17.
17.K. Meerholz and J. Heinze, Electrochim. Acta 41, 1839 (1996).
http://dx.doi.org/10.1016/0013-4686(95)00503-X
18.
18.S. Verlaak, V. Arkhipov, and P. Heremans, Appl. Phys. Lett. 82, 745 (2003).
http://dx.doi.org/10.1063/1.1541112
19.
19.M. Can, F. Sevin, and A. Yildiz, Appl. Surf. Sci. 210, 338 (2003).
http://dx.doi.org/10.1016/S0169-4332(03)00156-9
20.
20.M. Dankerl, A. Reitinger, M. Stutzmann, and J. A. Garrido, Phys. Status Solidi (RRL) 2, 31 (2008).
http://dx.doi.org/10.1002/pssr.200701266
21.
21.J. Duval, J. Lyklema, J. M. Kleijn, and H. P. van Leeuwen, Langmuir 17, 7573 (2001).
http://dx.doi.org/10.1021/la010833i
22.
22.R. Zimmermann, U. Freudenberg, R. Schweiß, D. Küttner, and C. Werner, Curr. Opin. Colloid Interface Sci. 15, 196 (2010).
http://dx.doi.org/10.1016/j.cocis.2010.01.002
23.
23.See supplementary material at http://dx.doi.org/10.1063/1.3581882 for a semilogarithmic plot of the transfer characteristic in Fig. 4(b).[Supplementary Material]
24.
24.A. Härtl, J. A. Garrido, S. Nowy, R. Zimmermann, C. Werner, D. Horinek, R. Netz, and M. Stutzmann, J. Am. Chem. Soc. 129, 1287 (2007).
http://dx.doi.org/10.1021/ja066543b
25.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/98/15/10.1063/1.3581882
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) Transistor layout. (a) Effective capacitance extracted from impedance spectroscopy measurements on an electrolyte//Au stack compared to the capacitance of an electrolyte/Au reference. The frequency-dependent phase of the impedance is also shown.

Image of FIG. 2.

Click to view

FIG. 2.

(a) Transistor characteristics of an electrolyte-gated OFET. (b) Recording of the drain-current during continuous cycling of the device between its on - and off-state .

Image of FIG. 3.

Click to view

FIG. 3.

(a) Dependence of the drain-source current on the of the electrolyte measured for decreasing (solid symbols) and increasing (open squares). The solid line shows the current simulated using the amphifunctional model with the following parameters: , , the surface site density used is . The acidity and alkalinity constants were and , respectively. (b) Drain current vs gate voltage measured in electrolytic solutions with different . The lines show fits to the linear region.

Image of FIG. 4.

Click to view

FIG. 4.

(a) Normalized drain-source current vs ion concentration for several monovalent salts. The solid line shows a simulated curve using a screening model (assuming a surface charge of ). (a) Drain current vs gate voltage measured in electrolytic solutions with varying KCl concentration, at constant . The lines show fits to the linear region.

Loading

Article metrics loading...

/content/aip/journal/apl/98/15/10.1063/1.3581882
2011-04-15
2014-04-19

Abstract

We report on the electrolytic gating of -sexithiophene thin film transistors, in which the organic semiconductor is in direct contact with an electrolyte. Due to the large capacitance of the electrical double layer at the electrolyte/semiconductor interface, modulation of the channel conductivity via an electrical field effect is achieved at low voltages. The transistors are stable for several hours and are sensitive to variations in the resulting from a -dependent surface charge, which modulates the threshold voltage. The response to different ion concentrations is described by the influence of the ions on the mobility and an electrostatic screening effect.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/98/15/1.3581882.html;jsessionid=3de3v91gjta58.x-aip-live-06?itemId=/content/aip/journal/apl/98/15/10.1063/1.3581882&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Electrolyte-gated organic field-effect transistors for sensing applications
http://aip.metastore.ingenta.com/content/aip/journal/apl/98/15/10.1063/1.3581882
10.1063/1.3581882
SEARCH_EXPAND_ITEM