1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Memory effects and carrier transport mechanisms of write-once- read-many-times memory devices fabricated using poly(3-hexylthiophene) molecules embedded in a polymethylmethacrylate layer on a flexible substrate
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/98/19/10.1063/1.3588231
1.
1.J. C. Bernède, Y. Berredjem, L. Cattin, and M. Morsli, Appl. Phys. Lett. 92, 083304 (2008).
http://dx.doi.org/10.1063/1.2888176
2.
2.L. Wang, M. -H. Yoon, G. Lu, Y. Yang, A. Facchetti, and T. J. Marks, Nature Mater. 5, 893 (2006).
http://dx.doi.org/10.1038/nmat1755
3.
3.J. H. Jung, J. H. Kim, T. W. Kim, C. S. Yoon, Y. H. Kim, and S. Jin, Appl. Phys. Lett. 89, 022112 (2006).
http://dx.doi.org/10.1063/1.2220548
4.
4.Y. Yang, J. Ouyang, L. Ma, R. J.-H. Teseng, and C. -W. Chu, Adv. Funct. Mater. 16, 1001 (2006).
http://dx.doi.org/10.1002/adfm.200500429
5.
5.J. C. Scott and L. D. Bozano, Adv. Mater. (Weinheim, Ger.) 19, 1452 (2007).
http://dx.doi.org/10.1002/adma.200602564
6.
6.W. R. Salaneck, O. Inganas, B. Themans, J. O. Nilsson, B. Siogren, J. -E. Osterholm, J. -L. Bredas, and S. Svensson, J. Chem. Phys. 89, 4613 (1988).
http://dx.doi.org/10.1063/1.454802
7.
7.Y. Zhao, G. Yuan, P. Roche, and M. Leclerc, Polymer 36, 2211 (1995).
http://dx.doi.org/10.1016/0032-3861(95)95298-F
8.
8.H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, and D. M. de Leeuw, Nature (London) 401, 685 (1999).
http://dx.doi.org/10.1038/44359
9.
9.J. Y. Seong, K. S. Chung, S. K. Kwak, Y. H. Kim, D. G. Moon, J. I. Han, and W. K. Kim, J. Korean Phys. Soc. 45, S914 (2004).
10.
10.S. Ebadian, B. Gholamkhass, S. Shambayati, S. Holdcroft, and P. Servati, Sol. Energy Mater. Sol. Cells 94, 2258 (2010).
http://dx.doi.org/10.1016/j.solmat.2010.07.021
11.
11.X. Yang, J. Loos, S. C. Veenstra, W. J. H. Verhees, M. M. Wienk, J. M. Kroon, M. A. J. Michels, and R. A. J. Janssen, Nano Lett. 5, 579 (2005).
http://dx.doi.org/10.1021/nl048120i
12.
12.S. -J. Kim and J. -S. Lee, Nano Lett. 10, 2884 (2010).
http://dx.doi.org/10.1021/nl1009662
13.
13.D. Choi, S. Jin, Y. Lee, S. H. Kim, D. S. Chung, K. Hong, C. Yang, J. Jung, J. K. Kim, M. Ree, and C. E. Park, ACS Appl. Mater. Interfaces 2, 48 (2010).
http://dx.doi.org/10.1021/am9005385
14.
14.S. Möller, C. Perlov, W. Jackson, C. Taussig, and S. R. Forrest, Nature (London) 426, 166 (2003).
http://dx.doi.org/10.1038/nature02070
15.
15.S. Smith and S. R. Forrest, Appl. Phys. Lett. 84, 5019 (2004).
http://dx.doi.org/10.1063/1.1763632
16.
16.J. Ouyang, C. -W. Chu, D. Sieves, and Y. Yang, Appl. Phys. Lett. 86, 123507 (2005).
http://dx.doi.org/10.1063/1.1887819
17.
17.H. S. Majumdar, J. K. Baral, R. Ősterbacka, O. Ikkala, and H. Stubb, Org. Electron. 6, 188 (2005).
http://dx.doi.org/10.1016/j.orgel.2005.06.005
18.
18.B. Mukherjee and A. J. Pal, Chem. Mater. 19, 1382 (2007).
http://dx.doi.org/10.1021/cm062828b
19.
19.Q. -D. Ling, D. -J. Liaw, E. Y.-H. Teo, C. Zhu, D. S.-H. Chan, E. -T. Kang, and K. -G. Neoh, Polymer 48, 5182 (2007).
http://dx.doi.org/10.1016/j.polymer.2007.06.025
20.
20.J. H. Ham, D. H. Oh, S. H. Cho, J. H. Jung, T. W. Kim, E. D. Ryu, and S. W. Kim, Appl. Phys. Lett. 94, 112101 (2009).
http://dx.doi.org/10.1063/1.3097805
21.
21.M. A. Mamo, W. S. Machado, W. A. L. van Otterlo, N. J. Coville, and I. A. Hümmelgen, Org. Electron. 11, 1858 (2010).
http://dx.doi.org/10.1016/j.orgel.2010.08.013
22.
22.W. T. Kim, J. H. Jung, T. W. Kim, and D. I. Son, Appl. Phys. Lett. 96, 253301 (2010).
http://dx.doi.org/10.1063/1.3453661
23.
23.K. C. Kao and W. Hwang, Electrical Transport in Solids (Pergamon, New York, 1981), Chap. 3, p. 156.
24.
24.M. A. Lampert and P. Mark, Current Injection in Solids (Academic Press, New York, 1970).
25.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/98/19/10.1063/1.3588231
Loading
/content/aip/journal/apl/98/19/10.1063/1.3588231
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/98/19/10.1063/1.3588231
2011-05-11
2014-07-31

Abstract

The memory effects and the carrier transport mechanisms of write-once-read-many-times (WORM) memory devicesfabricated using poly(3-hexylthiophene) (P3HT) molecules embedded in a polymethylmethacrylate (PMMA) polymer layer on a flexible substrate were investigated. Current-voltage (I-V) curves at 300 K for Al/P3HT:PMMA/indium-tin-oxide WORM device showed a permanent memory behavior with an ON/OFF ratio of . The estimated retention time of the ON state of the WORM device was more than 10 years. The carrier transport mechanisms of the WORM memory devices are described using several models to fit the experimental I-V data.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/98/19/1.3588231.html;jsessionid=xv2tctrsbgrh.x-aip-live-03?itemId=/content/aip/journal/apl/98/19/10.1063/1.3588231&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Memory effects and carrier transport mechanisms of write-once- read-many-times memory devices fabricated using poly(3-hexylthiophene) molecules embedded in a polymethylmethacrylate layer on a flexible substrate
http://aip.metastore.ingenta.com/content/aip/journal/apl/98/19/10.1063/1.3588231
10.1063/1.3588231
SEARCH_EXPAND_ITEM