1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Structural transition in superlattices and its influence on transport properties
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/98/21/10.1063/1.3593489
1.
1.A. Ohtomo and H. Y. Wang, Nature (London) 427, 423 (2004).
http://dx.doi.org/10.1038/nature02308
2.
2.S. Thiel, G. Hammerl, A. Schmehl, C. Schneider, and J. Mannhart, Science 313, 1942 (2006).
http://dx.doi.org/10.1126/science.1131091
3.
3.M. Basletic, J. -L. Maurice, C. Carrétéro, G. Herranz, O. Copie, M. Bibes, E. Jacquet, K. Bouzehouane, S. Fusil, and A. Barthélémy, Nature Mater. 7, 621 (2008).
http://dx.doi.org/10.1038/nmat2223
4.
4.Y. Hotta, T. Susaki, and H. Y. Hwang, Phys. Rev. Lett. 99, 236805 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.236805
5.
5.N. Reyren, S. Thiel, A. D. Caviglia, L. F. Kourkoutis, G. Hammerl, C. Richter, C. W. Schneider, T. Kopp, A. -S. Rüetschi, D. Jaccard, M. Gabay, D. A. Muller, J. -M. Triscone, and J. Mannhart, Science 317, 1196 (2007).
http://dx.doi.org/10.1126/science.1146006
6.
6.A. Brinkman, M. Huijben, M. van Zalk, J. Huijben, U. Zeitler, J. C. Maan, W. G. van der Wiel, G. Rijnders, D. H. A. Blank, and H. Hilgenkamp, Nature (London) 6, 493 (2007).
http://dx.doi.org/10.1038/nmat1931
7.
7.J. Mannhart and D. G. Schlom, Science 327, 1607 (2010).
http://dx.doi.org/10.1126/science.1181862
8.
8.N. Nakagawa, H. Y. Hwang, and D. A. Muller, Nature Mater. 5, 204 (2006).
http://dx.doi.org/10.1038/nmat1569
9.
9.W. C. Sheets, P. Boullay, U. Lüders, B. Mercey, and W. Prellier, Thin Solid Films 517, 5130 (2009).
http://dx.doi.org/10.1016/j.tsf.2009.03.031
10.
10.U. Lüders, W. C. Sheets, A. David, W. Prellier, and R. Frésard, Phys. Rev. B 80, 241102(R) (2009).
http://dx.doi.org/10.1103/PhysRevB.80.241102
11.
11.M. De Raychaudhury, E. Pavarini, and O. K. Andersen, Phys. Rev. Lett. 99, 126402 (2007).
http://dx.doi.org/10.1103/PhysRevLett.99.126402
12.
12.J. Fujioka, S. Miyasaki, and Y. Tokura, Phys. Rev. B 72, 024460 (2005).
http://dx.doi.org/10.1103/PhysRevB.72.024460
13.
13.W. C. Sheets, B. Mercey, and W. Prellier, Appl. Phys. Lett. 91, 192102 (2007).
http://dx.doi.org/10.1063/1.2805222
14.
14.P. Boullay, A. David, W. Sheets, U. Lüders, W. Prellier, T. Hayan, J. Verbeeck, C. Gatel, G. Vinze, and Z. Radi, Phys. Rev. B 83, 125403 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.125403
15.
15.G. Jackeli and G. Khaliullin, Phys. Rev. Lett. 101, 216804 (2008).
http://dx.doi.org/10.1103/PhysRevLett.101.216804
16.
16.V. Pardo and W. E. Pickett, Phys. Rev. B 81, 245117 (2010).
http://dx.doi.org/10.1103/PhysRevB.81.245117
17.
17.D. Vollhardt and P. Wölfle, Electronic Phase Transitions (Elsevier Science, Amsterdam, 1992).
18.
18.B. L. Altshuler, D. Khmel’nitzkii, A. I. Larkin, and P. A. Lee, Phys. Rev. B 22, 5142 (1980).
http://dx.doi.org/10.1103/PhysRevB.22.5142
19.
19.C. N. R. Rao, A. K. Cheetham, and R. Mahesh, Chem. Mater. 8, 2421 (1996).
http://dx.doi.org/10.1021/cm960201v
20.
20.P. Bordet, C. Chaillout, M. Marezio, Q. Huang, A. Santoro, S. -W. Cheong, H. Takagi, C. Oglesby, and B. Batlogg, J. Solid State Chem. 106, 253 (1993).
http://dx.doi.org/10.1006/jssc.1993.1285
21.
21.P. -E. Janolin, B. Fraisse, F. L. Marrec, and B. Dkhil, Appl. Phys. Lett. 90, 212904 (2007).
http://dx.doi.org/10.1063/1.2742313
22.
22.P. -E. Janolin, F. L. Marrec, J. Chevreul, and B. Dkhil, Appl. Phys. Lett. 90, 192910 (2007).
http://dx.doi.org/10.1063/1.2738060
23.
23.K. J. Choi, M. Biegalski, Y. L. Li, A. Sharan, J. Schubert, R. Uecker, P. Reiche, Y. B. Chen, X. Q. Pan, V. Gopalan, L. -Q. Chen, D. G. Schlom, and C. B. Eom, Science 306, 1005 (2004).
http://dx.doi.org/10.1126/science.1103218
24.
24.P. -E. Janolin, J. Mater. Sci. 44, 5025 (2009).
http://dx.doi.org/10.1007/s10853-009-3553-1
http://aip.metastore.ingenta.com/content/aip/journal/apl/98/21/10.1063/1.3593489
Loading
/content/aip/journal/apl/98/21/10.1063/1.3593489
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/98/21/10.1063/1.3593489
2011-05-24
2014-07-25

Abstract

Measurements of the resistiveproperties and the lattice parameters of a [6 unit cells]/[1 unit cell] superlattice between 10 K and room temperature are presented. A low temperature metallic phase compatible with a Fermi liquid behavior is evidenced. It disappears in the vicinity of a structuraltransition from a monoclinic to tetragonal phase, in which disorder seems to strongly influence the transport. Our results will enrich the understanding of the electronic properties of complex heterostructures.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/98/21/1.3593489.html;jsessionid=443wij2ebvc56.x-aip-live-02?itemId=/content/aip/journal/apl/98/21/10.1063/1.3593489&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
This feature is disabled while Scitation upgrades its access control system.
This feature is disabled while Scitation upgrades its access control system.
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Structural transition in LaVO3/SrVO3 superlattices and its influence on transport properties
http://aip.metastore.ingenta.com/content/aip/journal/apl/98/21/10.1063/1.3593489
10.1063/1.3593489
SEARCH_EXPAND_ITEM