1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
The full text of this article is not currently available.
f
Epitaxially grown semiconducting hexagonal boron nitride as a deep ultraviolet photonic material
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/98/21/10.1063/1.3593958
1.
1.Y. Kubota, K. Watanabe, O. Tsuda, and T. Taniguchi, Science 317, 932 (2007).
http://dx.doi.org/10.1126/science.1144216
2.
2.T. Sugino, C. Kimura, and T. Yamamoto, Appl. Phys. Lett. 80, 3602 (2002).
http://dx.doi.org/10.1063/1.1477622
3.
3.D. Pacilé, J. C. Meyer, Ç. Ö. Girit, and A. Zettl, Appl. Phys. Lett. 92, 133107 (2008).
http://dx.doi.org/10.1063/1.2903702
4.
4.L. Song, L. Ci, H. Lu, P. B. Sorokin, C. Jin, J. Ni, A. G. Kvashnin, D. G. Kvashnin, J. Lou, B. I. Yakobson, and P. M. Ajayan, Nano Lett. 10, 3209 (2010).
http://dx.doi.org/10.1021/nl1022139
5.
5.K. Watanabe, T. Taniguchi, and H. Kanda, Nat. Photonics 3, 591 (2009).
http://dx.doi.org/10.1038/nphoton.2009.167
6.
6.K. B. Nam, J. Li, M. L. Nakarmi, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett. 84, 5264 (2004).
http://dx.doi.org/10.1063/1.1765208
7.
7.V. Siklitsky, “boron nitride,” http://www.ioffe.rssi.ru/SVA/NSM/Semicond/BN/index.html.
8.
8.S. L. Rumyantsev, M. E. Levinshtein, A. D. Jackson, S. N. Mohammmad, G. L. Harris, M. G. Spencer, and M. S. Shur, in Properties of Advanced Semiconductor Materials GaN, AlN, InN, BN, SiC, SiGe, edited by M. E. Levinshtein, S. L. Rumyantsev, and M. S. Shur (Wiley, New York, 2001), pp. 6792.
9.
9.R. W. Lynch and H. G. J. Drickamer, J. Chem. Phys. 44, 181 (1966).
http://dx.doi.org/10.1063/1.1726442
10.
10.S. Nakamura, G. Fasol, and S. J. Pearton, The Blue Laser Diode: The Complete Story (Springer, New York, 2000).
11.
11.A. Zunger, A. Katzir, and A. Halperin, Phys. Rev. B 13, 5560 (1976).
http://dx.doi.org/10.1103/PhysRevB.13.5560
12.
12.J. Li, T. N. Oder, M. L. Nakarmi, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett. 80, 1210 (2002).
http://dx.doi.org/10.1063/1.1450038
13.
13.M. L. Nakarmi, K. H. Kim, M. Khizar, Z. Y. Fan, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett. 86, 092108 (2005).
http://dx.doi.org/10.1063/1.1879098
14.
14.M. L. Nakarmi, N. Nepal, C. Ugolini, T. M. Al Tahtamouni, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett. 89, 152120 (2006).
http://dx.doi.org/10.1063/1.2362582
15.
15.Y. Taniyasu, M. Kasu, and T. Makimoto, Nature (London) 441, 325 (2006).
http://dx.doi.org/10.1038/nature04760
16.
16.C. Pernot, M. Kim, S. Fukahori, T. Inazu, T. Fujita, Y. Nagasawa, A. Hirano, M. Ippommatsu, M. Iwaya, S. Kamiyama, I. Akasaki, and H. Amano, Appl. Phys. Express 3, 061004 (2010).
http://dx.doi.org/10.1143/APEX.3.061004
17.
17.M. Lu, A. Bousetta, A. Bensaoula, K. Waters, and J. A. Schultz, Appl. Phys. Lett. 68, 622 (1996).
http://dx.doi.org/10.1063/1.116488
18.
18.K. Nose, H. Oba, and T. Yoshida, Appl. Phys. Lett. 89, 112124 (2006).
http://dx.doi.org/10.1063/1.2354009
19.
19.B. He, W. J. Zhang, Z. Q. Yao, Y. M. Chong, Y. Yang, Q. Ye, X. J. Pan, J. A. Zapien, I. Bello, S. T. Lee, I. Gerhards, H. Zutz, and H. Hofsass, Appl. Phys. Lett. 95, 252106 (2009).
http://dx.doi.org/10.1063/1.3276065
20.
20.B. Van Zeghbroeck, Principles of Semiconductor Devices (2007), Chap. 2.
http://aip.metastore.ingenta.com/content/aip/journal/apl/98/21/10.1063/1.3593958
Loading
/content/aip/journal/apl/98/21/10.1063/1.3593958
Loading

Data & Media loading...

Loading

Article metrics loading...

/content/aip/journal/apl/98/21/10.1063/1.3593958
2011-05-24
2015-08-03

Abstract

Hexagonal boron nitride (hBN) has emerged as an important material for various device applications and as a template for graphene electronics. Low-dimensional hBN is expected to possess rich physical properties, similar to graphene. The synthesis of wafer-scale semiconducting hBN epitaxial layers with high crystalline quality and electrical conductivity control has not been achieved but is highly desirable. Large area hBN epitaxial layers (up to 2 in. in diameter) were synthesized by metal organic chemical vapor deposition. P-type conductivity control was attained by in situMg doping. Compared to Mg-doped wurtzite AlN, which possesses a comparable energyband gap, dramatic reductions in Mg acceptor energy level and P-type resistivity (by about six to seven orders of magnitude) have been realized in hBN epilayers. The ability of conductivity control and wafer-scale production of hBN opens up tremendous opportunities for emerging applications, ranging from revolutionizing p-layer approach in III-nitride deep ultraviolet optoelectronics to graphene electronics.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/98/21/1.3593958.html;jsessionid=uwmp73qcffic.x-aip-live-02?itemId=/content/aip/journal/apl/98/21/10.1063/1.3593958&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address

Oops! This section does not exist...

Use the links on this page to find existing content.

752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Epitaxially grown semiconducting hexagonal boron nitride as a deep ultraviolet photonic material
http://aip.metastore.ingenta.com/content/aip/journal/apl/98/21/10.1063/1.3593958
10.1063/1.3593958
SEARCH_EXPAND_ITEM