1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Low-loss asymmetric strip-loaded slot waveguides in silicon-on-insulator
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/98/23/10.1063/1.3597798
1.
1.V. R. Almeida, Q. F. Xu, C. A. Barrios, and M. Lipson, Opt. Lett. 29, 1209 (2004).
http://dx.doi.org/10.1364/OL.29.001209
2.
2.M. Hochberg, T. Baehr-Jones, G. Wang, J. Huang, P. Sullivan, L. Dalton, and A. Scherer, Opt. Express 15, 8401 (2007).
http://dx.doi.org/10.1364/OE.15.008401
3.
3.T. Baehr-Jones, B. Penkov, J. Huang, P. Sullivan, J. Davies, J. Takayesu, J. Luo, T. D. Kim, L. Dalton, and A. Jen, Appl. Phys. Lett. 92, 163303 (2008).
http://dx.doi.org/10.1063/1.2909656
4.
4.G. Wang, T. Baehr-Jones, M. Hochberg, and A. Scherer, Appl. Phys. Lett. 91, 143109 (2007).
http://dx.doi.org/10.1063/1.2793618
5.
5.R. Ding, T. Baehr-Jones, W. -J. Kim, X. Xiong, R. Bojko, J. -M. Fedeli, M. Fournier, and M. Hochberg, Opt. Express 18, 25061 (2010).
http://dx.doi.org/10.1364/OE.18.025061
6.
6.J. -M. Brosi, C. Koos, L. C. Andreani, M. Waldow, J. Leuthold, and W. Freude, Opt. Express 16, 4177 (2008).
http://dx.doi.org/10.1364/OE.16.004177
7.
7.PhotonicSystems, Part Number PSI-3600-MOD-D1.
8.
8.J. Witzens, T. Baehr-Jones, and M. Hochberg, Opt. Express 18, 16902 (2010).
http://dx.doi.org/10.1364/OE.18.016902
9.
10.
10.M. D. Henry, ICP etching of silicon for micro and nanoscale devices, Ph.D. thesis, California Institute of Technology, 2010.
11.
11.M. Borselli, T. J. Johnson, and O. Painter, Appl. Phys. Lett. 88, 131114 (2006).
http://dx.doi.org/10.1063/1.2191475
12.
12.R. Ding, T. Baehr-Jones, Y. Liu, R. Bojko, J. Witzens, S. Huang, J. Luo, S. Benight, P. Sullivan, J. -M. Fedeli, M. Fournier, L. Dalton, A. Jen, and M. Hochberg, Opt. Express 18, 15618 (2010).
http://dx.doi.org/10.1364/OE.18.015618
13.
13.G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, Nat. Photonics 4, 518 (2010).
http://dx.doi.org/10.1038/nphoton.2010.179
14.
14.D. Taillaert, W. Bogaerts, P. Bienstman, T. F. Krauss, P. Van Daele, I. Moerman, S. Verstuyft, K. De Mesel, and R. Baets, IEEE J. Quantum Electron. 38, 949 (2002).
http://dx.doi.org/10.1109/JQE.2002.1017613
15.
15.MicroChem NANOTM PMMA and Copolymer datasheet. http://www.microchem.com/products/pdf/PMMA_Data_Sheet.pdf.
16.
16.J. Luo, X. -H. Zhou, and A. K.-Y. Jen, J. Mater. Chem. 19, 7410 (2009).
http://dx.doi.org/10.1039/b907173c
17.
17.W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in C: The Art of Scientific Computing, 2nd ed. (Cambridge University Press, Cambridge, U.K., 1992), Chap. 15.
18.
18.A. Skumanich, M. Jurich, and J. D. Swalen, Appl. Phys. Lett. 62, 446 (1993).
http://dx.doi.org/10.1063/1.109618
19.
19.R. A. Soref and B. R. Bennett, IEEE J. Quantum Electron. 23, 123 (1987).
http://dx.doi.org/10.1109/JQE.1987.1073206
20.
20.K. K. Lee, D. R. Lim, H. -C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, Appl. Phys. Lett. 77, 1617 (2000).
http://dx.doi.org/10.1063/1.1308532
21.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/98/23/10.1063/1.3597798
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

(a) of TE0 mode of waveguide design 1, (b) SEM micrograph of the cross-section of a fabricated design 1 waveguide, (c) of TE0 mode of waveguide design 2, (d) SEM micrograph of the waveguide runouts group layout, the inset shows the curve-coupler between the routing ridge waveguide and the asymmetric strip-loaded slot waveguide.

Image of FIG. 2.

Click to view

FIG. 2.

(a) Dispersion curves of the TE0 and TE1 mode of design 1, with different slot offsets. (b) Figure-of-merit value vs slot offset for design 1 as well as an example design that uses an 80 nm wide slot. The values are normalized to their maximum value , which occurs at zero slot offset. The slot offset is normalized against slot width. (c) Modal pattern sensitivity to slot offset variations. The magnitude of Poynting vector is shown.

Image of FIG. 3.

Click to view

FIG. 3.

(a) Typical device spectra and linear regression of waveguide loss. The spectra of a group of five waveguide runouts of one sample obtained in one test. Quadratic fits are overlaid. The inset shows the linear regression of the peak optical output power extracted from the quadratic fits vs waveguide length. was measured. (b) Histogram of waveguide losses for the two designs.

Loading

Article metrics loading...

/content/aip/journal/apl/98/23/10.1063/1.3597798
2011-06-08
2014-04-18

Abstract

We report on low-loss asymmetric strip-loaded slot waveguides in silicon-on-insulator fabricated with 248 nm photolithography. Waveguide losses were 2 dB/cm or less at wavelengths near 1550 nm. A 40 nm strip-loading allows low-resistance electrical contact to be made to the two slot arms. The asymmetric design suppresses the TE1 mode while increasing the wavelength range for which the TE0 mode guides. This type of waveguide is suitable for building low insertion-loss, high-bandwidth, low drive-voltage modulators, when coated with an electro-optic polymer cladding.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/98/23/1.3597798.html;jsessionid=158fgg2vmu4qg.x-aip-live-02?itemId=/content/aip/journal/apl/98/23/10.1063/1.3597798&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Low-loss asymmetric strip-loaded slot waveguides in silicon-on-insulator
http://aip.metastore.ingenta.com/content/aip/journal/apl/98/23/10.1063/1.3597798
10.1063/1.3597798
SEARCH_EXPAND_ITEM