1887
banner image
No data available.
Please log in to see this content.
You have no subscription access to this content.
No metrics data to plot.
The attempt to load metrics for this article has failed.
The attempt to plot a graph for these metrics has failed.
f
Polarization splitting in polariton electroluminescence from an organic semiconductor microcavity with metallic reflectors
Rent:
Rent this article for
Access full text Article
/content/aip/journal/apl/98/23/10.1063/1.3599058
1.
1.D. G. Lidzey, D. D. C. Bradley, M. S. Skolnick, T. Virgili, S. Walker, and D. M. Whittaker, Nature (London) 395, 53 (1998).
http://dx.doi.org/10.1038/25692
2.
2.D. G. Lidzey, D. D. C. Bradley, T. Virgili, A. Armitage, M. S. Skolnick, and S. Walker, Phys. Rev. Lett. 82, 3316 (1999).
http://dx.doi.org/10.1103/PhysRevLett.82.3316
3.
3.R. J. Holmes and S. R. Forrest, Phys. Rev. Lett. 93, 186404 (2004).
http://dx.doi.org/10.1103/PhysRevLett.93.186404
4.
4.J. R. Tischler, M. S. Bradley, V. Bulovic, J. H. Song, and A. Nurmikko, Phys. Rev. Lett. 95, 036401 (2005).
http://dx.doi.org/10.1103/PhysRevLett.95.036401
5.
5.R. J. Holmes and S. R. Forrest, Org. Electron. 8, 77 (2007).
http://dx.doi.org/10.1016/j.orgel.2006.05.005
6.
6.S. Kéna-Cohen and S. R. Forrest, Nat. Photonics 4, 371 (2010).
http://dx.doi.org/10.1038/nphoton.2010.86
7.
7.R. Houdré, R. P. Stanley, U. Oesterle, M. Ilegems, and C. Weisbuch, Phys. Rev. B 49, 16761 (1994).
http://dx.doi.org/10.1103/PhysRevB.49.16761
8.
8.C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, Phys. Rev. Lett. 69, 3314 (1992).
http://dx.doi.org/10.1103/PhysRevLett.69.3314
9.
9.T. Virgili, D. G. Lidzey, D. D. C. Bradley, and S. Walker, Synth. Met. 116, 497 (2001).
http://dx.doi.org/10.1016/S0379-6779(00)00422-7
10.
10.A. Camposeo, L. Persano, P. Del Carro, T. Virgili, R. Cingolani, and D. Pisignano, Org. Electron. 8, 114 (2007).
http://dx.doi.org/10.1016/j.orgel.2006.06.004
11.
11.M. Oda, K. Hirata, T. Inoue, Y. Obara, T. Fujimura, and T. Tani, Phys. Status Solidi C 6, 291 (2009).
12.
12.P. A. Hobson, W. L. Barnes, D. G. Lidzey, G. A. Gehring, D. M. Whittaker, M. S. Skolnick, and S. Walker, Appl. Phys. Lett. 81, 3519 (2002).
http://dx.doi.org/10.1063/1.1517714
13.
13.R. J. Holmes and S. R. Forrest, Phys. Rev. B 71, 235203 (2005).
http://dx.doi.org/10.1103/PhysRevB.71.235203
14.
14.G. H. Lodden and R. J. Holmes, Phys. Rev. B 83, 075301 (2011).
http://dx.doi.org/10.1103/PhysRevB.83.075301
15.
15.G. H. Lodden and R. J. Holmes, Phys. Rev. B 82, 125317 (2010).
http://dx.doi.org/10.1103/PhysRevB.82.125317
16.
16.L. A. A. Pettersson, L. S. Roman, and O. Inganas, J. Appl. Phys. 86, 487 (1999).
http://dx.doi.org/10.1063/1.370757
17.
17.W. M. Haynes, Handbook of Chemistry and Physics (CRC, Cleveland/Boca Raton, 2010).
18.
18.F. Ma and X. Liu, Appl. Opt. 46, 6247 (2007).
http://dx.doi.org/10.1364/AO.46.006247
19.
19.H. Becker, S. E. Burns, N. Tessler, and R. H. Friend, J. Appl. Phys. 81, 2825 (1997).
http://dx.doi.org/10.1063/1.363940
20.
20.H. Benisty, R. Stanley, and M. Mayer, J. Opt. Soc. Am. A Opt. Image Sci. Vis 15, 1192 (1998).
http://dx.doi.org/10.1364/JOSAA.15.001192
21.
21.N. C. Lindquist, W. A. Luhman, S. Oh, and R. J. Holmes, Appl. Phys. Lett. 93, 123308 (2008).
http://dx.doi.org/10.1063/1.2988287
22.
22.V. J. Sorger, R. F. Oulton, J. Yao, G. Bartal, and X. Zhang, Nano Lett. 9, 3489 (2009).
http://dx.doi.org/10.1021/nl901682n
23.
23.R. Ameling and H. Giessen, Nano Lett. 10, 4394 (2010).
http://dx.doi.org/10.1021/nl1019408
24.
journal-id:
http://aip.metastore.ingenta.com/content/aip/journal/apl/98/23/10.1063/1.3599058
Loading
View: Figures

Figures

Image of FIG. 1.

Click to view

FIG. 1.

Microcavity device architecture discussed in the text. The electric and magnetic field components of the electromagnetic wave are denoted by either E or H with subscripts p or s indicating p- or s-polarized light, respectively. The electric field component of the electromagnetic wave is parallel (perpendicular) to the plane of incidence for p-polarized (s-polarized) light.

Image of FIG. 2.

Click to view

FIG. 2.

(a) Angle-resolved reflectivity spectra and (b) corresponding dispersion relations collected under p- and s-polarized illumination of the structure in Fig. 1. (c) Polarization splitting (symbols) for the upper and lower branches. Solid lines in parts (b) and (c) are the simulated dispersion curve and polarization splitting, respectively.

Image of FIG. 3.

Click to view

FIG. 3.

Measured (symbols) and simulated (solid lines) p- (a) and s-polarized (b) angle-resolved EL spectra for the device in Fig. 1. The vertical solid line denotes the position of the uncoupled excitonic resonance. (c) Schematic representation of an optical transfer matrix simulation of EL. Source terms at the interface are propagated by subset transfer matrices (arrows) out of the device resulting in emission from the top and bottom reflectors.

Image of FIG. 4.

Click to view

FIG. 4.

(a) Dispersion relations (symbols) determined from the p- and s-polarized EL spectra of Figs. 3(a) and 3(b), respectively. (b) The polarization splitting (symbols) obtained from the dispersion relations in (a). Solid lines are simulations obtained using the optical transfer matrix model of Fig. 3(c).

Loading

Article metrics loading...

/content/aip/journal/apl/98/23/10.1063/1.3599058
2011-06-07
2014-04-17

Abstract

Organic semiconductors have received considerable attention as the active medium in microcavity devices that exploit the regime of strong exciton–photon coupling. The eigenstates of these systems are microcavitypolaritons, whose properties are an admixture of the uncoupled exciton and photon. Organic microcavities are particularly interesting due to their large exciton binding energy which permits the electrical excitation of polaritons at room temperature. Measurements of electroluminescence are often facilitated through the use of metallic reflectors that form the optical microcavity and also serve as device electrodes. Here, we demonstrate that such structures exhibit a significant polarization splitting under both optical and electrical excitation. The size of the polarization splitting rivals those observed in strongly coupled microcavities based on distributed Bragg reflectors having a long optical penetration depth.

Loading

Full text loading...

/deliver/fulltext/aip/journal/apl/98/23/1.3599058.html;jsessionid=10th8j7337jor.x-aip-live-06?itemId=/content/aip/journal/apl/98/23/10.1063/1.3599058&mimeType=html&fmt=ahah&containerItemId=content/aip/journal/apl
true
true
This is a required field
Please enter a valid email address
752b84549af89a08dbdd7fdb8b9568b5 journal.articlezxybnytfddd
Scitation: Polarization splitting in polariton electroluminescence from an organic semiconductor microcavity with metallic reflectors
http://aip.metastore.ingenta.com/content/aip/journal/apl/98/23/10.1063/1.3599058
10.1063/1.3599058
SEARCH_EXPAND_ITEM